Inden Benjamin
Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103, Leipzig, Germany.
Theory Biosci. 2008 Jun;127(2):187-94. doi: 10.1007/s12064-008-0029-9. Epub 2008 Apr 16.
The way genes are interpreted biases an artificial evolutionary system towards some phenotypes. When evolving artificial neural networks, methods using direct encoding have genes representing neurons and synapses, while methods employing artificial ontogeny interpret genomes as recipes for the construction of phenotypes. Here, a neuroevolution system (neuroevolution with ontogeny or NEON) is presented that can emulate a well-known neuroevolution method using direct encoding (neuroevolution of augmenting topologies or NEAT), and therefore, can solve the same kinds of tasks. Performance on challenging control and memory benchmark tasks is reported. However, the encoding used by NEON is indirect, and it is shown how characteristics of artificial ontogeny can be introduced incrementally in different phases of evolutionary search.
基因的解读方式会使人工进化系统偏向某些表型。在进化人工神经网络时,使用直接编码的方法有代表神经元和突触的基因,而采用人工个体发生的方法则将基因组解释为构建表型的配方。在此,提出了一种神经进化系统(带个体发生的神经进化或NEON),它可以模拟一种使用直接编码的著名神经进化方法(拓扑增强神经进化或NEAT),因此能够解决相同类型的任务。报告了在具有挑战性的控制和记忆基准任务上的性能。然而,NEON使用的编码是间接的,并展示了如何在进化搜索的不同阶段逐步引入人工个体发生的特征。