Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K
Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK.
Science. 2008 Apr 18;320(5874):356-8. doi: 10.1126/science.1154663.
The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of molecular-scale electronics based on graphene.
石墨烯具有非凡的电子特性,其电荷载流子类似于相对论量子粒子,并且在各种应用中具有巨大潜力,这使得人们对这种新材料的兴趣迅速增长。我们报告了完全由石墨烯雕刻而成的量子点器件中的电子输运情况。在较大尺寸(>100纳米)时,它们表现为传统的单电子晶体管,呈现出周期性的库仑阻塞峰。对于小于100纳米的量子点,这些峰变得强烈非周期性,表明量子限制起了主要作用。随机的峰间距及其统计特性可以用混沌中微子台球理论很好地描述。宽度仅为几纳米的短缩颈仍具有导电性,并揭示出高达0.5电子伏特的限制能隙,这证明了基于石墨烯的分子尺度电子学的可能性。