Suppr超能文献

心肌细肌丝调节

Cardiac thin filament regulation.

作者信息

Kobayashi Tomoyoshi, Jin Lei, de Tombe Pieter P

机构信息

Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.

出版信息

Pflugers Arch. 2008 Oct;457(1):37-46. doi: 10.1007/s00424-008-0511-8. Epub 2008 Apr 18.

Abstract

Myocardial contraction is initiated upon the release of calcium into the cytosol from the sarcoplasmic reticulum following membrane depolarization. The fundamental physiological role of the heart is to pump an amount blood that is determined by the prevailing requirements of the body. The physiological control systems employed to accomplish this task include regulation of heart rate, the amount of calcium release, and the response of the cardiac myofilaments to activator calcium ions. Thin filament activation and relaxation dynamics has emerged as a pivotal regulatory system tuning myofilament function to the beat-to-beat regulation of cardiac output. Maladaptation of thin filament dynamics, in addition to dysfunctional calcium cycling, is now recognized as an important cellular mechanism causing reduced cardiac pump function in a variety of cardiac diseases. Here, we review current knowledge regarding protein-protein interactions involved in the dynamics of thin filament activation and relaxation and the regulation of these processes by protein kinase-mediated phosphorylation.

摘要

膜去极化后,肌浆网中的钙释放到细胞质中,心肌收缩由此启动。心脏的基本生理作用是泵出一定量的血液,其数量由身体当前的需求决定。用于完成这项任务的生理控制系统包括心率调节、钙释放量以及心肌肌丝对激活钙离子的反应。细肌丝激活和舒张动力学已成为一个关键的调节系统,可将肌丝功能调整至心输出量的逐搏调节。除了钙循环功能失调外,细肌丝动力学的适应不良现在被认为是导致多种心脏疾病中心脏泵功能降低的重要细胞机制。在此,我们综述了有关细肌丝激活和舒张动力学中涉及的蛋白质 - 蛋白质相互作用以及蛋白激酶介导的磷酸化对这些过程的调节的现有知识。

相似文献

1
Cardiac thin filament regulation.
Pflugers Arch. 2008 Oct;457(1):37-46. doi: 10.1007/s00424-008-0511-8. Epub 2008 Apr 18.
2
Thin filament-mediated regulation of cardiac contraction.
Annu Rev Physiol. 1996;58:447-81. doi: 10.1146/annurev.ph.58.030196.002311.
3
Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium.
J Physiol. 2000 Apr 1;524 Pt 1(Pt 1):233-43. doi: 10.1111/j.1469-7793.2000.00233.x.
4
Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments.
J Mol Biol. 2006 Aug 18;361(3):420-35. doi: 10.1016/j.jmb.2006.05.078. Epub 2006 Jun 30.
6
Cardiac muscle thin filament structures reveal calcium regulatory mechanism.
Nat Commun. 2020 Jan 9;11(1):153. doi: 10.1038/s41467-019-14008-1.
7
Troponin C - troponin I interactions and molecular signalling in cardiac myofilaments.
Adv Exp Med Biol. 1995;382:109-15. doi: 10.1007/978-1-4615-1893-8_12.
8
Cardiac contractility: how calcium activates the myofilaments.
Naturwissenschaften. 1998 Dec;85(12):575-82. doi: 10.1007/s001140050554.
9
A model of calcium activation of the cardiac thin filament.
Biochemistry. 2011 Aug 30;50(34):7405-13. doi: 10.1021/bi200506k. Epub 2011 Aug 5.

引用本文的文献

2
High hydrostatic pressure induces slow contraction in mouse cardiomyocytes.
Biophys J. 2022 Sep 6;121(17):3286-3294. doi: 10.1016/j.bpj.2022.07.016. Epub 2022 Jul 14.
4
Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics.
Int J Mol Sci. 2021 Aug 25;22(17):9187. doi: 10.3390/ijms22179187.
5
Clinical and Diagnostic Value of Highly Sensitive Cardiac Troponins in Arterial Hypertension.
Vasc Health Risk Manag. 2021 Jul 31;17:431-443. doi: 10.2147/VHRM.S315376. eCollection 2021.
6
8
Moving beyond simple answers to complex disorders in sarcomeric cardiomyopathies: the role of integrated systems.
Pflugers Arch. 2019 May;471(5):661-671. doi: 10.1007/s00424-019-02269-0. Epub 2019 Mar 8.
9
Myocardial relaxation in human heart failure: Why sarcomere kinetics should be center-stage.
Arch Biochem Biophys. 2019 Jan;661:145-148. doi: 10.1016/j.abb.2018.11.011. Epub 2018 Nov 14.
10
Role of the C-terminus mobile domain of cardiac troponin I in the regulation of thin filament activation in skinned papillary muscle strips.
Arch Biochem Biophys. 2018 Jun 15;648:27-35. doi: 10.1016/j.abb.2018.04.014. Epub 2018 Apr 25.

本文引用的文献

1
Increased cross-bridge cycling kinetics after exchange of C-terminal truncated troponin I in skinned rat cardiac muscle.
J Biol Chem. 2008 May 30;283(22):15114-21. doi: 10.1074/jbc.M801636200. Epub 2008 Mar 31.
2
Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations.
Biophys J. 2008 Sep;95(5):2368-90. doi: 10.1529/biophysj.107.119487. Epub 2008 Jan 30.
3
Review focus series: sarcomeric proteins as key elements in integrated control of cardiac function.
Cardiovasc Res. 2008 Mar 1;77(4):616-8. doi: 10.1093/cvr/cvn004. Epub 2008 Jan 10.
4
The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation.
Biochem Biophys Res Commun. 2008 Apr 25;369(1):82-7. doi: 10.1016/j.bbrc.2007.12.114. Epub 2007 Dec 26.
5
Sarcomeric proteins and inherited cardiomyopathies.
Cardiovasc Res. 2008 Mar 1;77(4):659-66. doi: 10.1093/cvr/cvm084. Epub 2007 Dec 4.
6
Sarcomeric dysfunction in heart failure.
Cardiovasc Res. 2008 Mar 1;77(4):649-58. doi: 10.1093/cvr/cvm079. Epub 2007 Nov 30.
7
Cardiac troponin I threonine 144: role in myofilament length dependent activation.
Circ Res. 2007 Nov 26;101(11):1081-3. doi: 10.1161/CIRCRESAHA.107.165258. Epub 2007 Nov 1.
9
Negative charges at protein kinase C sites of troponin I stabilize the inactive state of actin.
Biophys J. 2008 Jan 15;94(2):542-9. doi: 10.1529/biophysj.107.113944. Epub 2007 Sep 14.
10
Phosphorylation-dependent conformational transition of the cardiac specific N-extension of troponin I in cardiac troponin.
J Mol Biol. 2007 Oct 26;373(3):706-22. doi: 10.1016/j.jmb.2007.08.035. Epub 2007 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验