Suppr超能文献

液泡ATP酶的结构与调控

Structure and regulation of the vacuolar ATPases.

作者信息

Cipriano Daniel J, Wang Yanru, Bond Sarah, Hinton Ayana, Jefferies Kevin C, Qi Jie, Forgac Michael

机构信息

Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.

出版信息

Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):599-604. doi: 10.1016/j.bbabio.2008.03.013. Epub 2008 Mar 29.

Abstract

The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c'', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c''), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.

摘要

液泡型(H⁺)-ATP酶(V-ATP酶)是依赖ATP的质子泵,负责细胞内区室的酸化,对于某些细胞类型,还负责质子跨质膜运输。细胞内的V-ATP酶在内吞作用和细胞内膜运输、分泌和消化区室中大分子的加工和降解、神经递质和ATP等小分子的偶联运输以及包括包膜病毒和细菌毒素在内的病原体进入过程中发挥作用。V-ATP酶存在于肾细胞、破骨细胞、巨噬细胞、附睾细胞和某些肿瘤细胞的质膜中,在这些细胞中它们分别对尿液酸化、骨吸收、pH稳态、精子成熟和肿瘤细胞侵袭很重要。V-ATP酶由进行ATP水解的外周结构域(V₁)和负责质子运输的整合结构域(V₀)组成。V₁包含八个亚基(A-H),而V₀包含六个亚基(a、c、c'、c''、d和e)。V-ATP酶通过旋转机制运作,其中V₁内的ATP水解驱动包括一组蛋白脂质亚基(c、c'和c'')的中央旋转结构域相对于复合物其余部分的旋转。蛋白脂质环相对于V₀内的亚基a的旋转驱动质子跨膜的主动运输。体内调节V-ATP酶活性的两个重要机制是V₁和V₀结构域的可逆解离以及质子运输和ATP水解偶联效率的变化。本综述重点介绍了我们实验室在理解V-ATP酶的结构和调节方面的最新进展。

相似文献

1
Structure and regulation of the vacuolar ATPases.
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):599-604. doi: 10.1016/j.bbabio.2008.03.013. Epub 2008 Mar 29.
2
Function, structure and regulation of the vacuolar (H+)-ATPases.
Arch Biochem Biophys. 2008 Aug 1;476(1):33-42. doi: 10.1016/j.abb.2008.03.025. Epub 2008 Mar 29.
3
Regulation and isoform function of the V-ATPases.
Biochemistry. 2010 Jun 15;49(23):4715-23. doi: 10.1021/bi100397s.
4
Proton translocation driven by ATP hydrolysis in V-ATPases.
FEBS Lett. 2003 Jun 12;545(1):76-85. doi: 10.1016/s0014-5793(03)00396-x.
5
Subunit structure, function, and arrangement in the yeast and coated vesicle V-ATPases.
J Bioenerg Biomembr. 2003 Aug;35(4):291-9. doi: 10.1023/a:1025720713747.
7
Structure and properties of the clathrin-coated vesicle and yeast vacuolar V-ATPases.
J Bioenerg Biomembr. 1999 Feb;31(1):57-65. doi: 10.1023/a:1005496530380.
8
The vacuolar (H+)-ATPase: subunit arrangement and in vivo regulation.
J Bioenerg Biomembr. 2007 Dec;39(5-6):423-6. doi: 10.1007/s10863-007-9116-8.
9
Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
Nature. 2015 May 14;521(7551):241-5. doi: 10.1038/nature14365.
10
Arrangement of subunits in the proteolipid ring of the V-ATPase.
J Biol Chem. 2007 Nov 23;282(47):34058-65. doi: 10.1074/jbc.M704331200. Epub 2007 Sep 25.

引用本文的文献

1
ATP synthesis of Enterococcus hirae V-ATPase driven by sodium motive force.
J Biol Chem. 2025 Apr;301(4):108422. doi: 10.1016/j.jbc.2025.108422. Epub 2025 Mar 19.
3
Loss of coordination between basic cellular processes in human aging.
Nat Aging. 2024 Oct;4(10):1432-1445. doi: 10.1038/s43587-024-00696-y. Epub 2024 Sep 3.
5
Widespread use of proton-pumping rhodopsin in Antarctic phytoplankton.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2307638120. doi: 10.1073/pnas.2307638120. Epub 2023 Sep 18.
7
Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm.
Nat Genet. 2023 Mar;55(3):496-506. doi: 10.1038/s41588-023-01297-y. Epub 2023 Feb 20.
9
Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia.
Front Physiol. 2022 Sep 14;13:870243. doi: 10.3389/fphys.2022.870243. eCollection 2022.
10
Endosomal v-ATPase as a Sensor Determining Myocardial Substrate Preference.
Metabolites. 2022 Jun 22;12(7):579. doi: 10.3390/metabo12070579.

本文引用的文献

1
Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F.
J Biol Chem. 2008 Feb 22;283(8):4512-9. doi: 10.1074/jbc.M707144200. Epub 2007 Dec 21.
2
Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology.
Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29. doi: 10.1038/nrm2272.
3
Two distinct proton binding sites in the ATP synthase family.
Biochemistry. 2007 Oct 23;46(42):11800-9. doi: 10.1021/bi701083v. Epub 2007 Oct 2.
4
Arrangement of subunits in the proteolipid ring of the V-ATPase.
J Biol Chem. 2007 Nov 23;282(47):34058-65. doi: 10.1074/jbc.M704331200. Epub 2007 Sep 25.
5
Cellular environment is important in controlling V-ATPase dissociation and its dependence on activity.
J Biol Chem. 2007 Aug 24;282(34):24743-51. doi: 10.1074/jbc.M700663200. Epub 2007 Jun 12.
6
The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells.
J Cell Sci. 2006 Nov 1;119(Pt 21):4531-40. doi: 10.1242/jcs.03234. Epub 2006 Oct 17.
7
A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa.
J Biol Chem. 2006 Oct 20;281(42):31885-93. doi: 10.1074/jbc.M605532200. Epub 2006 Aug 15.
8
The E and G subunits of the yeast V-ATPase interact tightly and are both present at more than one copy per V1 complex.
J Biol Chem. 2006 Aug 11;281(32):22752-60. doi: 10.1074/jbc.M601441200. Epub 2006 Jun 14.
9
Localization of subunit C (Vma5p) in the yeast vacuolar ATPase by immuno electron microscopy.
FEBS Lett. 2006 Apr 3;580(8):2006-10. doi: 10.1016/j.febslet.2006.03.001. Epub 2006 Mar 10.
10
The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase.
Microbiol Mol Biol Rev. 2006 Mar;70(1):177-91. doi: 10.1128/MMBR.70.1.177-191.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验