Suppr超能文献

质子泵视紫红质在南极浮游植物中的广泛应用。

Widespread use of proton-pumping rhodopsin in Antarctic phytoplankton.

机构信息

Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.

Department of Marine Sciences, University of Georgia, Athens, GA 30602.

出版信息

Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2307638120. doi: 10.1073/pnas.2307638120. Epub 2023 Sep 18.

Abstract

Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air-sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.

摘要

海洋浮游植物的光合作用碳(C)固定在调节海洋与大气间二氧化碳的交换方面起着关键作用,从而影响全球气候。在南大洋(SO),光合作用(PS)常受到铁含量低、温度低以及光强低但高度可变的限制。最近,在海洋浮游植物中鉴定出质子泵视紫红质(PPR),为细胞能量提供了一种无铁、光驱动的替代来源。这些蛋白质通过视黄醛发色团的光吸收将质子泵过细胞膜,所得的 pH 能量梯度可用于主动膜转运或三磷酸腺苷的合成。在这里,我们表明 PPR 在南极浮游植物中普遍存在,尤其是在铁限制区域。在 SO 模型二型硅藻中,我们发现它定位于液泡膜,使液泡成为光驱动细胞能量产生的替代光合细胞器。与光合作用 C 固定不同,光合作用 C 固定在较低温度下会显著减少,PPR 的质子转运活性不受温度降低的影响。在培养的 SO 二型硅藻中,细胞 PPR 水平随铁浓度的降低而增加,而 PPR 光化学产生的能量可大大增加 PS 的能量,尤其是在 PS 经常被光抑制的高光强下。SO 水域浮游植物中 PPR 基因表达和高视黄醛浓度支持其在极地环境中的广泛应用。PPR 是 SO 浮游植物在寒冷、缺铁和可变光环境中生长和生存的重要适应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验