Suppr超能文献

离散状态模型与RNA二级结构环熵的精确估计

Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

作者信息

Zhang Jian, Lin Ming, Chen Rong, Wang Wei, Liang Jie

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA.

出版信息

J Chem Phys. 2008 Mar 28;128(12):125107. doi: 10.1063/1.2895050.

Abstract

Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html.

摘要

构象熵对RNA分子的稳定性和折叠起着重要作用,但测量或计算与长环相关的构象熵具有挑战性。我们基于已知的RNA结构开发了优化的RNA主链离散k态模型,用于计算环的熵,环被建模为自回避行走。为了估计长长度(最长50)的发夹环、凸起环、内环和多分支环的熵,我们基于序贯蒙特卡罗原理开发了一种有效的采样方法。我们的方法考虑了排除体积效应。它具有通用性,可应用于计算更长长度和任意复杂度环的熵。对于短长度的环,我们的结果与最近的理论模型和实验测量结果吻合良好。对于长环,我们估计的发夹环熵与雅各布森 - 斯托克迈耶外推模型高度吻合。然而,对于凸起环和更复杂的二级结构,如内环和多分支环,我们发现雅各布森 - 斯托克迈耶外推模型存在较大误差。基于估计的熵,我们开发了经验公式,用于准确计算不同二级结构中长环的熵。我们对环的不对称大小效应的研究表明,内环的环熵在很大程度上由环的总长度决定,仅略微受两个环的不对称大小影响。我们的发现表明,实验测量的内环中环长度的显著不对称效应可能部分是焓效应。我们的方法可用于开发对研究RNA稳定性和折叠以及预测RNA二级和三级结构重要的改进能量参数。用于计算环熵的离散模型和程序可从http://gila.bioengr.uic.edu/resources/RNA.html下载。

相似文献

1
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
J Chem Phys. 2008 Mar 28;128(12):125107. doi: 10.1063/1.2895050.
2
A two-length-scale polymer theory for RNA loop free energies and helix stacking.
RNA. 2010 Jul;16(7):1350-5. doi: 10.1261/rna.1831710. Epub 2010 May 26.
3
Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.
RNA. 2016 Dec;22(12):1808-1818. doi: 10.1261/rna.053694.115. Epub 2016 Oct 19.
4
Role of small loops in DNA melting.
Biopolymers. 2001 Apr 5;58(4):374-89. doi: 10.1002/1097-0282(20010405)58:4<374::AID-BIP1014>3.0.CO;2-P.
5
Computing the conformational entropy for RNA folds.
J Chem Phys. 2010 Jun 21;132(23):235104. doi: 10.1063/1.3447385.
6
Atomistic Free Energy Model for Nucleic Acids: Simulations of Single-Stranded DNA and the Entropy Landscape of RNA Stem-Loop Structures.
J Phys Chem B. 2015 Nov 25;119(47):14840-56. doi: 10.1021/acs.jpcb.5b08077. Epub 2015 Nov 17.
8
Salt dependence of nucleic acid hairpin stability.
Biophys J. 2008 Jul;95(2):738-52. doi: 10.1529/biophysj.108.131524. Epub 2008 Apr 18.
9
Conformational entropy of the RNA phosphate backbone and its contribution to the folding free energy.
Biophys J. 2014 Apr 1;106(7):1497-507. doi: 10.1016/j.bpj.2014.02.015.
10
Vfold2D-MC: A Physics-Based Hybrid Model for Predicting RNA Secondary Structure Folding.
J Phys Chem B. 2021 Sep 16;125(36):10108-10118. doi: 10.1021/acs.jpcb.1c04731. Epub 2021 Sep 2.

引用本文的文献

1
cgRNASP: coarse-grained statistical potentials with residue separation for RNA structure evaluation.
NAR Genom Bioinform. 2023 Mar 3;5(1):lqad016. doi: 10.1093/nargab/lqad016. eCollection 2023 Mar.
2
Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions.
PLoS Comput Biol. 2022 Oct 19;18(10):e1010501. doi: 10.1371/journal.pcbi.1010501. eCollection 2022 Oct.
3
FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures.
Biophys J. 2022 Sep 20;121(18):3381-3392. doi: 10.1016/j.bpj.2022.08.017. Epub 2022 Aug 17.
4
Thermodynamics of unfolding mechanisms of mouse mammary tumor virus pseudoknot from a coarse-grained loop-entropy model.
J Biol Phys. 2022 Jun;48(2):129-150. doi: 10.1007/s10867-022-09602-2. Epub 2022 Apr 20.
5
A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots.
Biophys J. 2019 Aug 6;117(3):520-532. doi: 10.1016/j.bpj.2019.06.037. Epub 2019 Jul 10.
6
Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target.
RNA. 2019 May;25(5):620-629. doi: 10.1261/rna.069328.118. Epub 2019 Feb 15.
7
Effects of flanking regions on HDV cotranscriptional folding kinetics.
RNA. 2018 Sep;24(9):1229-1240. doi: 10.1261/rna.065961.118. Epub 2018 Jun 28.
8
Topological Constraints and Their Conformational Entropic Penalties on RNA Folds.
Biophys J. 2018 May 8;114(9):2059-2071. doi: 10.1016/j.bpj.2018.03.035.
9
Fast exploration of an optimal path on the multidimensional free energy surface.
PLoS One. 2017 May 18;12(5):e0177740. doi: 10.1371/journal.pone.0177740. eCollection 2017.
10

本文引用的文献

1
Viral RNA pseudoknots: versatile motifs in gene expression and replication.
Nat Rev Microbiol. 2007 Aug;5(8):598-610. doi: 10.1038/nrmicro1704.
2
Monte Carlo sampling of near-native structures of proteins with applications.
Proteins. 2007 Jan 1;66(1):61-8. doi: 10.1002/prot.21203.
4
Predicting RNA folding thermodynamics with a reduced chain representation model.
RNA. 2005 Dec;11(12):1884-97. doi: 10.1261/rna.2109105. Epub 2005 Oct 26.
5
Extracting stacking interaction parameters for RNA from the data set of native structures.
J Mol Biol. 2005 Mar 18;347(1):53-69. doi: 10.1016/j.jmb.2004.12.012. Epub 2005 Jan 12.
8
RNA backbone is rotameric.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13904-9. doi: 10.1073/pnas.1835769100. Epub 2003 Nov 11.
10
Thermodynamics of three-way multibranch loops in RNA.
Biochemistry. 2001 Jun 12;40(23):6971-81. doi: 10.1021/bi0029548.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验