Suppr超能文献

ADAR介导的RNA编辑在新发现靶点中的特异性

Specificity of ADAR-mediated RNA editing in newly identified targets.

作者信息

Riedmann Eva M, Schopoff Sandy, Hartner Jochen C, Jantsch Michael F

机构信息

Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria.

出版信息

RNA. 2008 Jun;14(6):1110-8. doi: 10.1261/rna.923308. Epub 2008 Apr 22.

Abstract

Adenosine deaminases that act on RNA (ADARs) convert adenosines to inosine in both coding and noncoding double-stranded RNA. Deficiency in either ADAR1 or ADAR2 in mice is incompatible with normal life and development. While the ADAR2 knockout phenotype can be attributed to the lack of editing of the GluR-B receptor, the embryonic lethal phenotype caused by ADAR1 deficiency still awaits clarification. Recently, massive editing was observed in noncoding regions of mRNAs in mice and humans. Moreover, editing was observed in protein-coding regions of four mRNAs encoding FlnA, CyFip2, Blcap, and IGFBP7. Here, we investigate which of the two active mammalian ADAR enzymes is responsible for editing of these RNAs and whether any of them could possibly contribute to the phenotype observed in ADAR knockout mice. Editing of Blcap, FlnA, and some sites within B1 and B2 SINEs clearly depends on ADAR1, while other sites depend on ADAR2. Based on our data, substrate specificities can be further defined for ADAR1 and ADAR2. Future studies on the biological implications associated with a changed editing status of the studied ADAR targets will tell whether one of them turns out to be directly or indirectly responsible for the severe phenotype caused by ADAR1 deficiency.

摘要

作用于RNA的腺苷脱氨酶(ADARs)可将编码和非编码双链RNA中的腺苷转化为肌苷。小鼠中ADAR1或ADAR2的缺失与正常生命和发育不兼容。虽然ADAR2基因敲除表型可归因于GluR - B受体缺乏编辑,但ADAR1缺乏导致的胚胎致死表型仍有待阐明。最近,在小鼠和人类的mRNA非编码区观察到大量编辑。此外,在编码FlnA、CyFip2、Blcap和IGFBP7的四种mRNA的蛋白质编码区也观察到编辑。在此,我们研究两种活性哺乳动物ADAR酶中哪一种负责这些RNA的编辑,以及它们中的任何一种是否可能导致ADAR基因敲除小鼠中观察到的表型。Blcap、FlnA以及B1和B2 SINEs内的一些位点的编辑明显依赖于ADAR1,而其他位点依赖于ADAR2。根据我们的数据,可以进一步确定ADAR1和ADAR2的底物特异性。未来对与所研究的ADAR靶标编辑状态改变相关的生物学意义的研究将揭示它们中的一种是否直接或间接导致ADAR1缺乏引起的严重表型。

相似文献

1
Specificity of ADAR-mediated RNA editing in newly identified targets.
RNA. 2008 Jun;14(6):1110-8. doi: 10.1261/rna.923308. Epub 2008 Apr 22.
2
Altered A-to-I RNA editing in human embryogenesis.
PLoS One. 2012;7(7):e41576. doi: 10.1371/journal.pone.0041576. Epub 2012 Jul 31.
3
A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing.
RNA. 2020 Apr;26(4):454-469. doi: 10.1261/rna.072728.119. Epub 2020 Jan 15.
4
Substrate recognition by ADAR1 and ADAR2.
RNA. 2001 Jun;7(6):846-58. doi: 10.1017/s135583820101007x.
5
Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities.
Biochemistry. 2000 Oct 24;39(42):12875-84. doi: 10.1021/bi001383g.
6
ADAR1 and ADAR2 expression and editing activity during forebrain development.
Dev Neurosci. 2009;31(3):223-37. doi: 10.1159/000210185. Epub 2009 Mar 27.
7
ADAR2 A-->I editing: site selectivity and editing efficiency are separate events.
Nucleic Acids Res. 2003 Aug 15;31(16):4874-81. doi: 10.1093/nar/gkg681.
8
Evolutionarily conserved human targets of adenosine to inosine RNA editing.
Nucleic Acids Res. 2005 Feb 24;33(4):1162-8. doi: 10.1093/nar/gki239. Print 2005.
10
ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep.
Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):356-369. doi: 10.1016/j.bbagrm.2018.10.011. Epub 2018 Oct 31.

引用本文的文献

1
Specific and efficient RNA A-to-I editing through cleavage of an ADAR inhibitor.
Nat Biotechnol. 2025 Mar 26. doi: 10.1038/s41587-025-02591-2.
2
ncRNA Editing: Functional Characterization and Computational Resources.
Methods Mol Biol. 2025;2883:455-495. doi: 10.1007/978-1-0716-4290-0_20.
3
ADBP-1 regulates ADR-2 nuclear localization to control editing substrate selection.
Nucleic Acids Res. 2024 Sep 9;52(16):9501-9518. doi: 10.1093/nar/gkae641.
4
ADAR1: from basic mechanisms to inhibitors.
Trends Cell Biol. 2025 Jan;35(1):59-73. doi: 10.1016/j.tcb.2024.06.006. Epub 2024 Jul 18.
5
Divergent landscapes of A-to-I editing in postmortem and living human brain.
Nat Commun. 2024 Jun 26;15(1):5366. doi: 10.1038/s41467-024-49268-z.
6
Divergent landscapes of A-to-I editing in postmortem and living human brain.
medRxiv. 2024 May 9:2024.05.06.24306763. doi: 10.1101/2024.05.06.24306763.
7
Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction.
J Virol. 2024 May 14;98(5):e0004724. doi: 10.1128/jvi.00047-24. Epub 2024 Apr 23.
8
RNA sequences that direct selective ADAR editing from a SELEX library bearing 8-azanebularine.
Bioorg Med Chem. 2024 Apr 15;104:117700. doi: 10.1016/j.bmc.2024.117700. Epub 2024 Mar 29.
9
Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction.
bioRxiv. 2024 Jan 11:2024.01.11.575274. doi: 10.1101/2024.01.11.575274.

本文引用的文献

1
Redirection of silencing targets by adenosine-to-inosine editing of miRNAs.
Science. 2007 Feb 23;315(5815):1137-40. doi: 10.1126/science.1138050.
2
Hypothesis: RNA editing of microRNA target sites in humans?
RNA. 2007 Apr;13(4):463-7. doi: 10.1261/rna.296407. Epub 2007 Jan 25.
3
RNA editing level in the mouse is determined by the genomic repeat repertoire.
RNA. 2006 Oct;12(10):1802-9. doi: 10.1261/rna.165106. Epub 2006 Aug 29.
4
Alu elements within human mRNAs are probable microRNA targets.
Trends Genet. 2006 Oct;22(10):532-6. doi: 10.1016/j.tig.2006.08.007. Epub 2006 Aug 17.
5
Filamins: promiscuous organizers of the cytoskeleton.
Trends Biochem Sci. 2006 Jul;31(7):411-9. doi: 10.1016/j.tibs.2006.05.006. Epub 2006 Jun 16.
6
RNA editing of human microRNAs.
Genome Biol. 2006;7(4):R27. doi: 10.1186/gb-2006-7-4-r27. Epub 2006 Apr 4.
7
Modulation of microRNA processing and expression through RNA editing by ADAR deaminases.
Nat Struct Mol Biol. 2006 Jan;13(1):13-21. doi: 10.1038/nsmb1041. Epub 2005 Dec 20.
8
Filamin A: phenotypic diversity.
Curr Opin Genet Dev. 2005 Jun;15(3):301-7. doi: 10.1016/j.gde.2005.04.001.
9
A bioinformatic screen for novel A-I RNA editing sites reveals recoding editing in BC10.
Bioinformatics. 2005 Jun 1;21(11):2590-5. doi: 10.1093/bioinformatics/bti411. Epub 2005 Mar 29.
10
Evolutionarily conserved human targets of adenosine to inosine RNA editing.
Nucleic Acids Res. 2005 Feb 24;33(4):1162-8. doi: 10.1093/nar/gki239. Print 2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验