Department of Chromosome Biology; Max F. Perutz Laboratories; University of Vienna; A-1030 Vienna, Austria.
RNA Biol. 2013 Oct;10(10):1611-7. doi: 10.4161/rna.26216. Epub 2013 Sep 4.
RNA editing by ADARs can change the coding potential of protein-coding mRNAs. So far, this type of RNA editing has mainly been shown to affect RNAs expressed in the nervous system with much lower editing levels being observed in other tissues. The actin crosslinking proteins filamin α and filamin β are widely expressed in most tissues. The mRNAs encoding either protein are edited at the same position leading to a conserved Q to R exchange in both proteins. Using bar-coded next generation sequencing, we show that editing of filamin α is most abundant in the gastrointestinal tract and only to a lesser extent in the nervous system. Using knockout mice, we show that ADARB1 (ADAR2) is responsible for the majority of FLNA editing, while ADAR1 can edit filamin α mRNA in some tissues quite efficiently. Interestingly, editing levels of filamin α and β do not follow the same trend across tissues, suggesting a substrate-specific regulation of editing.
ADAR 介导的 RNA 编辑可以改变蛋白质编码 mRNA 的编码潜能。到目前为止,这种类型的 RNA 编辑主要被显示影响在神经系统中表达的 RNA,而在其他组织中观察到的编辑水平要低得多。肌动蛋白交联蛋白细丝蛋白α和细丝蛋白β在大多数组织中广泛表达。编码这两种蛋白质的 mRNA 在相同位置被编辑,导致两种蛋白质中保守的 Q 到 R 替换。使用条形码下一代测序,我们表明细丝蛋白α的编辑在胃肠道中最为丰富,而在神经系统中则较少。使用基因敲除小鼠,我们表明 ADARB1(ADAR2)负责大多数 FLNA 的编辑,而 ADAR1 可以在一些组织中非常有效地编辑细丝蛋白α mRNA。有趣的是,细丝蛋白α和β的编辑水平在不同组织中并不遵循相同的趋势,这表明编辑存在底物特异性调节。