Suppr超能文献

作为蛋白质酶辅因子的核糖开关效应物。

Riboswitch effectors as protein enzyme cofactors.

作者信息

Cochrane Jesse C, Strobel Scott A

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.

出版信息

RNA. 2008 Jun;14(6):993-1002. doi: 10.1261/rna.908408. Epub 2008 Apr 22.

Abstract

The recently identified glmS ribozyme revealed that RNA enzymes, like protein enzymes, are capable of using small molecules as catalytic cofactors to promote chemical reactions. Flavin mononucleotide (FMN), S-adenosyl methionine (SAM), adenosyl cobalamin (AdoCbl), and thiamine pyrophosphate (TPP) are known ligands for RNA riboswitches in the control of gene expression, but are also catalytically powerful and ubiquitous cofactors in protein enzymes. If RNA, instead of just binding these molecules, could harness the chemical potential of the cofactor, it would significantly expand the enzymatic repertoire of ribozymes. Here we review the chemistry of AdoCbl, SAM, FMN, and TPP in protein enzymology and speculate on how these cofactors might have been used by ribozymes in the prebiotic RNA World or may still find application in modern biology.

摘要

最近发现的 glmS 核酶表明,RNA 酶与蛋白质酶一样,能够利用小分子作为催化辅因子来促进化学反应。黄素单核苷酸(FMN)、S-腺苷甲硫氨酸(SAM)、腺苷钴胺素(AdoCbl)和硫胺素焦磷酸(TPP)是已知的 RNA 核糖开关在基因表达调控中的配体,但也是蛋白质酶中具有强大催化作用且普遍存在的辅因子。如果 RNA 不仅能结合这些分子,还能利用辅因子的化学势能,那么这将显著扩展核酶的酶促功能范围。在此,我们综述了蛋白质酶学中 AdoCbl、SAM、FMN 和 TPP 的化学性质,并推测这些辅因子在生命起源前的 RNA 世界中可能是如何被核酶利用的,以及它们在现代生物学中是否仍有应用。

相似文献

1
Riboswitch effectors as protein enzyme cofactors.
RNA. 2008 Jun;14(6):993-1002. doi: 10.1261/rna.908408. Epub 2008 Apr 22.
2
Functional diversity of organic molecule enzyme cofactors.
Nat Prod Rep. 2013 Oct 11;30(10):1324-45. doi: 10.1039/c3np70045c. Epub 2013 Aug 12.
3
The chemical versatility of RNA.
Philos Trans R Soc Lond B Biol Sci. 2011 Oct 27;366(1580):2929-35. doi: 10.1098/rstb.2011.0143.
4
Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules.
Philos Trans R Soc Lond B Biol Sci. 2011 Oct 27;366(1580):2942-8. doi: 10.1098/rstb.2011.0131.
5
Structural studies of the purine and SAM binding riboswitches.
Cold Spring Harb Symp Quant Biol. 2006;71:259-68. doi: 10.1101/sqb.2006.71.015.
6
Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes.
Chem Soc Rev. 2020 Oct 21;49(20):7331-7353. doi: 10.1039/d0cs00617c. Epub 2020 Sep 18.
7
Inclusion of thiamine diphosphate and S-adenosylmethionine at their chemically active sites.
J Org Chem. 2005 Dec 9;70(25):10227-37. doi: 10.1021/jo0511896.
10
RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme.
RNA. 2017 May;23(5):655-672. doi: 10.1261/rna.060368.116. Epub 2017 Jan 30.

引用本文的文献

1
Gradual evolution of a homo-l-peptide world on homo-d-configured RNA and DNA.
Chem Sci. 2024 Aug 2;15(35):14171-6. doi: 10.1039/d4sc03384a.
2
Structure-based characterization and compound identification of the wild-type THF class-II riboswitch.
Nucleic Acids Res. 2024 Aug 12;52(14):8454-8465. doi: 10.1093/nar/gkae377.
3
Electromagnetic Field Stimulation Therapy for Alzheimer's Disease.
Neurology (Chic). 2024;3(1). Epub 2024 Jan 5.
4
Structure-based investigations of the NAD+-II riboswitch.
Nucleic Acids Res. 2023 Jan 11;51(1):54-67. doi: 10.1093/nar/gkac1227.
5
Discovering riboswitches: the past and the future.
Trends Biochem Sci. 2023 Feb;48(2):119-141. doi: 10.1016/j.tibs.2022.08.009. Epub 2022 Sep 20.
6
A Cofactor-Based Mechanism for the Origin of the Genetic Code.
Orig Life Evol Biosph. 2022 Sep;52(1-3):149-163. doi: 10.1007/s11084-022-09628-5. Epub 2022 Sep 8.
8
Oxidative metabolisms catalyzed Earth's oxygenation.
Nat Commun. 2022 Mar 14;13(1):1328. doi: 10.1038/s41467-022-28996-0.
9
Structural Insights Into Tautomeric Dynamics in Nucleic Acids and in Antiviral Nucleoside Analogs.
Front Mol Biosci. 2022 Jan 25;8:823253. doi: 10.3389/fmolb.2021.823253. eCollection 2021.
10
The Biochemical Landscape of Riboswitch Ligands.
Biochemistry. 2022 Feb 1;61(3):137-149. doi: 10.1021/acs.biochem.1c00765. Epub 2022 Jan 24.

本文引用的文献

1
Structure of the SAM-II riboswitch bound to S-adenosylmethionine.
Nat Struct Mol Biol. 2008 Feb;15(2):177-82. doi: 10.1038/nsmb.1371. Epub 2008 Jan 20.
2
The distributions, mechanisms, and structures of metabolite-binding riboswitches.
Genome Biol. 2007;8(11):R239. doi: 10.1186/gb-2007-8-11-r239.
3
Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16092-7. doi: 10.1073/pnas.0705884104. Epub 2007 Oct 2.
4
Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme.
J Mol Biol. 2007 Oct 12;373(1):178-89. doi: 10.1016/j.jmb.2007.07.062. Epub 2007 Aug 10.
5
Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA.
J Mol Biol. 2007 Oct 12;373(1):112-26. doi: 10.1016/j.jmb.2007.07.039. Epub 2007 Aug 2.
6
The chemistry of protein catalysis.
J Mol Biol. 2007 Oct 5;372(5):1261-77. doi: 10.1016/j.jmb.2007.07.034. Epub 2007 Aug 2.
7
Control of alternative RNA splicing and gene expression by eukaryotic riboswitches.
Nature. 2007 May 24;447(7143):497-500. doi: 10.1038/nature05769. Epub 2007 Apr 29.
8
Structure, mechanism and catalytic duality of thiamine-dependent enzymes.
Cell Mol Life Sci. 2007 Apr;64(7-8):892-905. doi: 10.1007/s00018-007-6423-5.
9
A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
Nat Struct Mol Biol. 2007 Apr;14(4):308-17. doi: 10.1038/nsmb1224. Epub 2007 Mar 25.
10
Trans-acting glmS catalytic riboswitch: locked and loaded.
RNA. 2007 Apr;13(4):468-77. doi: 10.1261/rna.341807. Epub 2007 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验