Miao Zhichao, Adamiak Ryszard W, Antczak Maciej, Batey Robert T, Becka Alexander J, Biesiada Marcin, Boniecki Michał J, Bujnicki Janusz M, Chen Shi-Jie, Cheng Clarence Yu, Chou Fang-Chieh, Ferré-D'Amaré Adrian R, Das Rhiju, Dawson Wayne K, Ding Feng, Dokholyan Nikolay V, Dunin-Horkawicz Stanisław, Geniesse Caleb, Kappel Kalli, Kladwang Wipapat, Krokhotin Andrey, Łach Grzegorz E, Major François, Mann Thomas H, Magnus Marcin, Pachulska-Wieczorek Katarzyna, Patel Dinshaw J, Piccirilli Joseph A, Popenda Mariusz, Purzycka Katarzyna J, Ren Aiming, Rice Greggory M, Santalucia John, Sarzynska Joanna, Szachniuk Marta, Tandon Arpit, Trausch Jeremiah J, Tian Siqi, Wang Jian, Weeks Kevin M, Williams Benfeard, Xiao Yi, Xu Xiaojun, Zhang Dong, Zok Tomasz, Westhof Eric
Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 67000 Strasbourg, France;
Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland.
RNA. 2017 May;23(5):655-672. doi: 10.1261/rna.060368.116. Epub 2017 Jan 30.
RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5'-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson-Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/.
RNA谜题是一项关于盲法三维RNA结构预测的集体实验。我们在此报告RNA谜题的第三轮实验。本轮实验包含五个谜题,即4号、8号、12号、13号和14号谜题,均为核糖开关适体结构,以及7号谜题,一个核酶结构。核糖开关结构包括小分子(-腺苷甲硫氨酸、环二腺苷单磷酸、5-氨基-4-咪唑甲酰胺核苷5'-三磷酸、谷氨酰胺)和蛋白质(YbxF)的生物结合位点,其中一组描述了无配体状态和配体结合状态之间的大的构象变化。Varkud卫星核酶是已知大型核酶中最近解析出的结构。所有谜题都具有已确定的生物学功能,需要通过结构理解来认识其分子机制。通过使用快速实验数据,包括多维化学图谱分析,以及对RNA二级结构的准确预测,三维结构中的大部分接触点已被正确预测,从而使排名靠前的预测结果具有相似的拓扑结构。基于模板和同源性的预测能够以特别高的准确率预测结构。然而,从RNA三维结构的从头预测中获得生物学见解仍然取决于RNA的大小和复杂性。在许多情况下,RNA结构的盲法计算预测似乎已经能够提供有用的结构信息。与之前的RNA谜题第二轮实验类似,非沃森-克里克相互作用的预测以及观察到的高原子冲突分数表明,明显需要改进算法。所有预测模型和评估结果可在http://ahsoka.u-strasbg.fr/rnapuzzles/获取。