McFarland Dennis J, Wolpaw Jonathan R
Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, NY 12201, USA.
J Neural Eng. 2008 Jun;5(2):155-62. doi: 10.1088/1741-2560/5/2/006. Epub 2008 Apr 22.
People can learn to control EEG features consisting of sensorimotor rhythm amplitudes and can use this control to move a cursor in one or two dimensions to a target on a screen. Cursor movement depends on the estimate of the amplitudes of sensorimotor rhythms. Autoregressive models are often used to provide these estimates. The order of the autoregressive model has varied widely among studies. Through analyses of both simulated and actual EEG data, the present study examines the effects of model order on sensorimotor rhythm measurements and BCI performance. The results show that resolution of lower frequency signals requires higher model orders and that this requirement reflects the temporal span of the model coefficients. This is true for both simulated EEG data and actual EEG data during brain-computer interface (BCI) operation. Increasing model order, and decimating the signal were similarly effective in increasing spectral resolution. Furthermore, for BCI control of two-dimensional cursor movement, higher model orders produced better performance in each dimension and greater independence between horizontal and vertical movements. In sum, these results show that autoregressive model order selection is an important determinant of BCI performance and should be based on criteria that reflect system performance.
人们可以学会控制由感觉运动节律幅度组成的脑电图特征,并利用这种控制在一维或二维空间中将光标移动到屏幕上的目标位置。光标移动取决于对感觉运动节律幅度的估计。自回归模型经常被用于提供这些估计值。在各项研究中,自回归模型的阶数差异很大。通过对模拟和实际脑电图数据的分析,本研究考察了模型阶数对感觉运动节律测量和脑机接口性能的影响。结果表明,较低频率信号的分辨率需要更高的模型阶数,并且这一要求反映了模型系数的时间跨度。这对于模拟脑电图数据和脑机接口(BCI)操作期间的实际脑电图数据都是如此。增加模型阶数和对信号进行抽取在提高频谱分辨率方面同样有效。此外,对于二维光标移动的脑机接口控制,更高的模型阶数在每个维度上都产生了更好的性能,并且水平和垂直运动之间具有更大的独立性。总之,这些结果表明自回归模型阶数的选择是脑机接口性能的一个重要决定因素,并且应该基于反映系统性能的标准。