Suppr超能文献

基于感觉运动节律的脑机接口(BCI):自回归谱分析的模型阶数选择

Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis.

作者信息

McFarland Dennis J, Wolpaw Jonathan R

机构信息

Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, NY 12201, USA.

出版信息

J Neural Eng. 2008 Jun;5(2):155-62. doi: 10.1088/1741-2560/5/2/006. Epub 2008 Apr 22.

Abstract

People can learn to control EEG features consisting of sensorimotor rhythm amplitudes and can use this control to move a cursor in one or two dimensions to a target on a screen. Cursor movement depends on the estimate of the amplitudes of sensorimotor rhythms. Autoregressive models are often used to provide these estimates. The order of the autoregressive model has varied widely among studies. Through analyses of both simulated and actual EEG data, the present study examines the effects of model order on sensorimotor rhythm measurements and BCI performance. The results show that resolution of lower frequency signals requires higher model orders and that this requirement reflects the temporal span of the model coefficients. This is true for both simulated EEG data and actual EEG data during brain-computer interface (BCI) operation. Increasing model order, and decimating the signal were similarly effective in increasing spectral resolution. Furthermore, for BCI control of two-dimensional cursor movement, higher model orders produced better performance in each dimension and greater independence between horizontal and vertical movements. In sum, these results show that autoregressive model order selection is an important determinant of BCI performance and should be based on criteria that reflect system performance.

摘要

人们可以学会控制由感觉运动节律幅度组成的脑电图特征,并利用这种控制在一维或二维空间中将光标移动到屏幕上的目标位置。光标移动取决于对感觉运动节律幅度的估计。自回归模型经常被用于提供这些估计值。在各项研究中,自回归模型的阶数差异很大。通过对模拟和实际脑电图数据的分析,本研究考察了模型阶数对感觉运动节律测量和脑机接口性能的影响。结果表明,较低频率信号的分辨率需要更高的模型阶数,并且这一要求反映了模型系数的时间跨度。这对于模拟脑电图数据和脑机接口(BCI)操作期间的实际脑电图数据都是如此。增加模型阶数和对信号进行抽取在提高频谱分辨率方面同样有效。此外,对于二维光标移动的脑机接口控制,更高的模型阶数在每个维度上都产生了更好的性能,并且水平和垂直运动之间具有更大的独立性。总之,这些结果表明自回归模型阶数的选择是脑机接口性能的一个重要决定因素,并且应该基于反映系统性能的标准。

相似文献

1
Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis.
J Neural Eng. 2008 Jun;5(2):155-62. doi: 10.1088/1741-2560/5/2/006. Epub 2008 Apr 22.
2
Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9. doi: 10.1109/TNSRE.2005.848627.
3
Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.
J Neural Eng. 2011 Apr;8(2):025020. doi: 10.1088/1741-2560/8/2/025020. Epub 2011 Mar 24.
4
Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface.
Neurology. 2005 May 24;64(10):1775-7. doi: 10.1212/01.WNL.0000158616.43002.6D.
5
Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
IEEE Trans Neural Syst Rehabil Eng. 2004 Sep;12(3):331-8. doi: 10.1109/TNSRE.2004.834627.
6
Brain-computer interface (BCI) operation: signal and noise during early training sessions.
Clin Neurophysiol. 2005 Jan;116(1):56-62. doi: 10.1016/j.clinph.2004.07.004.
7
A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain-computer interface.
J Neural Eng. 2010 Feb;7(1):16003. doi: 10.1088/1741-2560/7/1/016003. Epub 2010 Jan 14.
8
High-resolution EEG techniques for brain-computer interface applications.
J Neurosci Methods. 2008 Jan 15;167(1):31-42. doi: 10.1016/j.jneumeth.2007.06.031. Epub 2007 Jul 10.
9
Cortical imaging of sensorimotor rhythms for BCI applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4539-42. doi: 10.1109/IEMBS.2009.5334130.
10
An evaluation of autoregressive spectral estimation model order for brain-computer interface applications.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1323-6. doi: 10.1109/IEMBS.2006.259822.

引用本文的文献

1
Proficiency in motor imagery is linked to the lateralization of focused ERD patterns and beta PDC.
J Neuroeng Rehabil. 2025 Feb 20;22(1):30. doi: 10.1186/s12984-025-01571-6.
3
Favoring the cognitive-motor process in the closed-loop of BCI mediated post stroke motor function recovery: challenges and approaches.
Front Neurorobot. 2023 Oct 10;17:1271967. doi: 10.3389/fnbot.2023.1271967. eCollection 2023.
4
Continuous shared control of a mobile robot with brain-computer interface and autonomous navigation for daily assistance.
Comput Struct Biotechnol J. 2023 Jul 29;22:3-16. doi: 10.1016/j.csbj.2023.07.033. eCollection 2023.
5
Brain-computer interface: trend, challenges, and threats.
Brain Inform. 2023 Aug 4;10(1):20. doi: 10.1186/s40708-023-00199-3.
6
Study on Antidepressant Emotion Regulation Based on Feedback Analysis of Music Therapy with Brain-Computer Interface.
Comput Math Methods Med. 2022 Oct 5;2022:7200678. doi: 10.1155/2022/7200678. eCollection 2022.
7
Brain-Computer Interface Priming for Cervical Transcutaneous Spinal Cord Stimulation Therapy: An Exploratory Case Study.
Front Rehabil Sci. 2022 Jun 23;3:896766. doi: 10.3389/fresc.2022.896766. eCollection 2022.
8
Effects of Gaze Fixation on the Performance of a Motor Imagery-Based Brain-Computer Interface.
Front Hum Neurosci. 2022 Jan 24;15:773603. doi: 10.3389/fnhum.2021.773603. eCollection 2021.
9
Exploring Fatigue Effects on Performance Variation of Intensive Brain-Computer Interface Practice.
Front Neurosci. 2021 Dec 2;15:773790. doi: 10.3389/fnins.2021.773790. eCollection 2021.
10
Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals.
Sensors (Basel). 2020 Nov 4;20(21):6285. doi: 10.3390/s20216285.

本文引用的文献

1
An evaluation of autoregressive spectral estimation model order for brain-computer interface applications.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1323-6. doi: 10.1109/IEMBS.2006.259822.
2
Autoregressive spectral analysis in Brain Computer Interface context.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:3736-9. doi: 10.1109/IEMBS.2006.260238.
3
4
Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
J Neural Eng. 2006 Sep;3(3):235-44. doi: 10.1088/1741-2560/3/3/006. Epub 2006 Jul 20.
5
Characterization of four-class motor imagery EEG data for the BCI-competition 2005.
J Neural Eng. 2005 Dec;2(4):L14-22. doi: 10.1088/1741-2560/2/4/L02. Epub 2005 Aug 15.
6
Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9. doi: 10.1109/TNSRE.2005.848627.
7
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54. doi: 10.1073/pnas.0403504101. Epub 2004 Dec 7.
8
Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
IEEE Trans Neural Syst Rehabil Eng. 2004 Sep;12(3):331-8. doi: 10.1109/TNSRE.2004.834627.
9
BCI2000: a general-purpose brain-computer interface (BCI) system.
IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43. doi: 10.1109/TBME.2004.827072.
10
Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans.
Neurosci Lett. 2003 Jul 17;345(2):89-92. doi: 10.1016/s0304-3940(03)00470-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验