Ecole Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France.
J Neural Eng. 2010 Feb;7(1):16003. doi: 10.1088/1741-2560/7/1/016003. Epub 2010 Jan 14.
People can learn to control electroencephalogram (EEG) features consisting of sensorimotor-rhythm amplitudes and use this control to move a cursor in one, two or three dimensions to a target on a video screen. This study evaluated several possible alternative models for translating these EEG features into two-dimensional cursor movement by building an offline simulation using data collected during online performance. In offline comparisons, support-vector regression (SVM) with a radial basis kernel produced somewhat better performance than simple multiple regression, the LASSO or a linear SVM. These results indicate that proper choice of a translation algorithm is an important factor in optimizing brain-computer interface (BCI) performance, and provide new insight into algorithm choice for multidimensional movement control.
人们可以学习控制脑电图(EEG)特征,包括感觉运动节律幅度,并使用这种控制在视频屏幕上将光标移动到一个、两个或三个维度的目标上。本研究通过使用在线性能期间收集的数据构建离线模拟,评估了将这些 EEG 特征转换为二维光标移动的几种可能的替代模型。在离线比较中,使用径向基核的支持向量回归(SVM)的性能略优于简单的多元回归、LASSO 或线性 SVM。这些结果表明,正确选择翻译算法是优化脑机接口(BCI)性能的一个重要因素,并为多维运动控制的算法选择提供了新的见解。