Suppr超能文献

二维基于运动想象脑-机接口的回归技术比较。

A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain-computer interface.

机构信息

Ecole Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France.

出版信息

J Neural Eng. 2010 Feb;7(1):16003. doi: 10.1088/1741-2560/7/1/016003. Epub 2010 Jan 14.

Abstract

People can learn to control electroencephalogram (EEG) features consisting of sensorimotor-rhythm amplitudes and use this control to move a cursor in one, two or three dimensions to a target on a video screen. This study evaluated several possible alternative models for translating these EEG features into two-dimensional cursor movement by building an offline simulation using data collected during online performance. In offline comparisons, support-vector regression (SVM) with a radial basis kernel produced somewhat better performance than simple multiple regression, the LASSO or a linear SVM. These results indicate that proper choice of a translation algorithm is an important factor in optimizing brain-computer interface (BCI) performance, and provide new insight into algorithm choice for multidimensional movement control.

摘要

人们可以学习控制脑电图(EEG)特征,包括感觉运动节律幅度,并使用这种控制在视频屏幕上将光标移动到一个、两个或三个维度的目标上。本研究通过使用在线性能期间收集的数据构建离线模拟,评估了将这些 EEG 特征转换为二维光标移动的几种可能的替代模型。在离线比较中,使用径向基核的支持向量回归(SVM)的性能略优于简单的多元回归、LASSO 或线性 SVM。这些结果表明,正确选择翻译算法是优化脑机接口(BCI)性能的一个重要因素,并为多维运动控制的算法选择提供了新的见解。

相似文献

1
A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain-computer interface.
J Neural Eng. 2010 Feb;7(1):16003. doi: 10.1088/1741-2560/7/1/016003. Epub 2010 Jan 14.
2
Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9. doi: 10.1109/TNSRE.2005.848627.
3
Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis.
J Neural Eng. 2008 Jun;5(2):155-62. doi: 10.1088/1741-2560/5/2/006. Epub 2008 Apr 22.
4
Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
IEEE Trans Neural Syst Rehabil Eng. 2004 Sep;12(3):331-8. doi: 10.1109/TNSRE.2004.834627.
5
Brain-computer interface (BCI) operation: signal and noise during early training sessions.
Clin Neurophysiol. 2005 Jan;116(1):56-62. doi: 10.1016/j.clinph.2004.07.004.
6
Optimizing Prediction Model for a Noninvasive Brain-Computer Interface Platform Using Channel Selection, Classification, and Regression.
IEEE J Biomed Health Inform. 2019 Nov;23(6):2475-2482. doi: 10.1109/JBHI.2019.2892379. Epub 2019 Jan 11.
7
Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
J Neural Eng. 2009 Aug;6(4):046005. doi: 10.1088/1741-2560/6/4/046005. Epub 2009 Jun 25.
8
Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans.
Neurosci Lett. 2003 Jul 17;345(2):89-92. doi: 10.1016/s0304-3940(03)00470-1.
9
Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
Clin Neurophysiol. 2009 Feb;120(2):239-47. doi: 10.1016/j.clinph.2008.11.015. Epub 2009 Jan 3.
10
Brain-computer interface (BCI) operation: optimizing information transfer rates.
Biol Psychol. 2003 Jul;63(3):237-51. doi: 10.1016/s0301-0511(03)00073-5.

引用本文的文献

2
Audio-visual feedback for electromyographic control of vowel synthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3600-3. doi: 10.1109/EMBC.2012.6346745.
3
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces.
J Neural Eng. 2013 Feb;10(1):016002. doi: 10.1088/1741-2560/10/1/016002. Epub 2012 Dec 10.
4
Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces.
J Med Syst. 2012 Nov;36 Suppl 1:S51-63. doi: 10.1007/s10916-012-9893-4. Epub 2012 Nov 2.
5
Brain-computer interface based on generation of visual images.
PLoS One. 2011;6(6):e20674. doi: 10.1371/journal.pone.0020674. Epub 2011 Jun 10.
6
Neuroanatomical differences in toddler boys with fragile x syndrome and idiopathic autism.
Arch Gen Psychiatry. 2011 Mar;68(3):295-305. doi: 10.1001/archgenpsychiatry.2010.153. Epub 2010 Nov 1.

本文引用的文献

1
A scanning protocol for a sensorimotor rhythm-based brain-computer interface.
Biol Psychol. 2009 Feb;80(2):169-75. doi: 10.1016/j.biopsycho.2008.08.004. Epub 2008 Aug 22.
2
Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis.
J Neural Eng. 2008 Jun;5(2):155-62. doi: 10.1088/1741-2560/5/2/006. Epub 2008 Apr 22.
3
Target selection during bimanual reaching to direct cues is unaffected by the perceptual similarity of the targets.
J Exp Psychol Hum Percept Perform. 2007 Oct;33(5):1107-16. doi: 10.1037/0096-1523.33.5.1107.
4
5
The BCI competition. III: Validating alternative approaches to actual BCI problems.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):153-9. doi: 10.1109/TNSRE.2006.875642.
6
BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):135-8. doi: 10.1109/TNSRE.2006.875637.
7
Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9. doi: 10.1109/TNSRE.2005.848627.
8
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54. doi: 10.1073/pnas.0403504101. Epub 2004 Dec 7.
9
BCI2000: a general-purpose brain-computer interface (BCI) system.
IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43. doi: 10.1109/TBME.2004.827072.
10
Linear and nonlinear methods for brain-computer interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):165-9. doi: 10.1109/TNSRE.2003.814484.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验