School of Electrical and Information Engineering, University of Sydney, Sydney, NSW 2006, Australia.
School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.
Sensors (Basel). 2020 Nov 4;20(21):6285. doi: 10.3390/s20216285.
There has been a growing interest in computational electroencephalogram (EEG) signal processing in a diverse set of domains, such as cortical excitability analysis, event-related synchronization, or desynchronization analysis. In recent years, several inconsistencies were found across different EEG studies, which authors often attributed to methodological differences. However, the assessment of such discrepancies is deeply underexplored. It is currently unknown if methodological differences can fully explain emerging differences and the nature of these differences. This study aims to contrast widely used methodological approaches in EEG processing and compare their effects on the outcome variables. To this end, two publicly available datasets were collected, each having unique traits so as to validate the results in two different EEG territories. The first dataset included signals with event-related potentials (visual stimulation) from 45 subjects. The second dataset included resting state EEG signals from 16 subjects. Five EEG processing steps, involved in the computation of power and phase quantities of EEG frequency bands, were explored in this study: artifact removal choices (with and without artifact removal), EEG signal transformation choices (raw EEG channels, Hjorth transformed channels, and averaged channels across primary motor cortex), filtering algorithms (Butterworth filter and Blackman-Harris window), EEG time window choices (-750 ms to 0 ms and -250 ms to 0 ms), and power spectral density (PSD) estimation algorithms (Welch's method, Fast Fourier Transform, and Burg's method). Powers and phases estimated by carrying out variations of these five methods were analyzed statistically for all subjects. The results indicated that the choices in EEG transformation and time-window can strongly affect the PSD quantities in a variety of ways. Additionally, EEG transformation and filter choices can influence phase quantities significantly. These results raise the need for a consistent and standard EEG processing pipeline for computational EEG studies. Consistency of signal processing methods cannot only help produce comparable results and reproducible research, but also pave the way for federated machine learning methods, e.g., where model parameters rather than data are shared.
近年来,在皮质兴奋性分析、事件相关同步或去同步分析等多个领域,对计算脑电图 (EEG) 信号处理的兴趣日益浓厚。近年来,不同的 EEG 研究中发现了一些不一致之处,作者通常将其归因于方法学上的差异。然而,对这些差异的评估还远远不够深入。目前还不清楚方法学上的差异是否可以完全解释新出现的差异及其性质。本研究旨在对比 EEG 处理中广泛使用的方法学方法,并比较它们对结果变量的影响。为此,收集了两个公开可用的数据集,每个数据集都具有独特的特点,以便在两个不同的 EEG 领域验证结果。第一个数据集包括来自 45 名受试者的与事件相关电位(视觉刺激)相关的信号。第二个数据集包括来自 16 名受试者的静息态 EEG 信号。本研究探讨了计算 EEG 频带的功率和相位量的五个 EEG 处理步骤:去除伪迹的选择(有和无伪迹去除)、EEG 信号转换的选择(原始 EEG 通道、Hjorth 变换通道和初级运动皮层的平均通道)、滤波算法(巴特沃斯滤波器和 Blackman-Harris 窗口)、EEG 时间窗口的选择(-750ms 到 0ms 和-250ms 到 0ms)和功率谱密度(PSD)估计算法(Welch 方法、快速傅里叶变换和 Burg 方法)。对所有受试者进行了这五种方法的变化,对估计的功率和相位进行了统计分析。结果表明,EEG 转换和时间窗口的选择可以以多种方式强烈影响 PSD 量。此外,EEG 转换和滤波器的选择会显著影响相位量。这些结果表明,需要为计算 EEG 研究建立一致和标准的 EEG 处理流程。信号处理方法的一致性不仅有助于产生可比的结果和可重复的研究,而且为联邦机器学习方法铺平了道路,例如,共享的是模型参数而不是数据。