Grove Laurie E, Xie Juan, Yikilmaz Emine, Miller Anne-Frances, Brunold Thomas C
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Inorg Chem. 2008 May 19;47(10):3978-92. doi: 10.1021/ic702412y. Epub 2008 Apr 24.
In Fe- and Mn-dependent superoxide dismutases (SODs), second-sphere residues have been implicated in precisely tuning the metal ion reduction potential to maximize catalytic activity (Vance, C. K.; Miller, A.-F. J. Am. Chem. Soc. 1998, 120, 461-467). In the present study, spectroscopic and computational methods were used to characterize three distinct Fe-bound SOD species that possess different second-coordination spheres and, consequently, Fe(3+/2+)reduction potentials that vary by approximately 1 V, namely, FeSOD, Fe-substituted MnSOD (Fe(Mn)SOD), and the Q69E FeSOD mutant. Despite having markedly different metal ion reduction potentials, FeSOD, Fe(Mn)SOD, and Q69E FeSOD exhibit virtually identical electronic absorption, circular dichroism, and magnetic circular dichroism (MCD) spectra in both their oxidized and reduced states. Likewise, variable-temperature, variable-field MCD data obtained for the oxidized and reduced species do not reveal any significant electronic, and thus geometric, variations within the Fe ligand environment. To gain insight into the mechanism of metal ion redox tuning, complete enzyme models for the oxidized and reduced states of all three Fe-bound SOD species were generated using combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations. Consistent with our spectroscopic data, density functional theory computations performed on the corresponding active-site models predict that the three SOD species share similar active-site electronic structures in both their oxidized and reduced states. By using the QM/MM-optimized active-site models in conjunction with the conductor-like screening model to calculate the proton-coupled Fe(3+/2+) reduction potentials, we found that different hydrogen-bonding interactions with the conserved second-sphere Gln (changed to Glu in Q69E FeSOD) greatly perturb the p K of the Fe-bound solvent ligand and, thus, drastically affect the proton-coupled metal ion reduction potential.
在铁和锰依赖性超氧化物歧化酶(SOD)中,第二配位层残基与精确调节金属离子还原电位以最大化催化活性有关(万斯,C.K.;米勒,A.-F.《美国化学会志》1998年,120卷,461 - 467页)。在本研究中,采用光谱和计算方法对三种不同的铁结合SOD物种进行了表征,它们具有不同的第二配位层,因此铁(3 + / 2 +)还原电位相差约1 V,即铁超氧化物歧化酶(FeSOD)、铁取代的锰超氧化物歧化酶(Fe(Mn)SOD)和Q69E FeSOD突变体。尽管金属离子还原电位明显不同,但FeSOD、Fe(Mn)SOD和Q69E FeSOD在氧化态和还原态下均表现出几乎相同的电子吸收、圆二色性和磁圆二色性(MCD)光谱。同样,氧化态和还原态物种的变温、变场MCD数据并未揭示铁配体环境内任何显著的电子变化,进而也未揭示几何变化。为深入了解金属离子氧化还原调节机制,使用量子力学/分子力学(QM / MM)组合几何优化方法生成了所有三种铁结合SOD物种氧化态和还原态的完整酶模型。与我们的光谱数据一致,对相应活性位点模型进行的密度泛函理论计算预测,这三种SOD物种在氧化态和还原态下均具有相似的活性位点电子结构。通过将QM / MM优化的活性位点模型与类导体屏蔽模型结合使用来计算质子耦合的铁(3 + / 2 +)还原电位,我们发现与保守的第二配位层谷氨酰胺(在Q69E FeSOD中变为谷氨酸)不同的氢键相互作用极大地扰乱了铁结合溶剂配体的pK值,从而极大地影响了质子耦合的金属离子还原电位。