Suppr超能文献

锰取代铁超氧化物歧化酶的几何和电子结构。

Geometric and electronic structures of manganese-substituted iron superoxide dismutase.

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison Wisconsin 53706, USA.

出版信息

Inorg Chem. 2013 Mar 18;52(6):3356-67. doi: 10.1021/ic302867y. Epub 2013 Mar 5.

Abstract

The active-site structures of the oxidized and reduced forms of manganese-substituted iron superoxide dismutase (Mn(Fe)SOD) are examined, for the first time, using a combination of spectroscopic and computational methods. On the basis of electronic absorption, circular dichroism (CD), magnetic CD (MCD), and variable-temperature variable-field MCD data obtained for oxidized Mn(Fe)SOD, we propose that the active site of this species is virtually identical to that of wild-type manganese SOD (MnSOD), with both containing a metal ion that resides in a trigonal bipyramidal ligand environment. This proposal is corroborated by quantum mechanical/molecular mechanical (QM/MM) computations performed on complete protein models of Mn(Fe)SOD in both its oxidized and reduced states and, for comparison, wild-type (WT) MnSOD. The major differences between the QM/MM optimized active sites of WT MnSOD and Mn(Fe)SOD are a smaller (His)N-Mn-N(His) equatorial angle and a longer (Gln146(69))NH···O(sol) H-bond distance in the metal-substituted protein. Importantly, these modest geometric differences are consistent with our spectroscopic data obtained for the oxidized proteins and high-field electron paramagnetic resonance spectra reported previously for reduced Mn(Fe)SOD and MnSOD. As Mn(Fe)SOD exhibits a reduction midpoint potential (E(m)) almost 700 mV higher than that of MnSOD, which has been shown to be sufficient for explaining the lack of SOD activity displayed by the metal-subtituted species (Vance, C. K.; Miller, A. F. Biochemistry 2001, 40, 13079-13087), E(m)'s were computed for our experimentally validated QM/MM optimized models of Mn(Fe)SOD and MnSOD. These computations properly reproduce the experimental trend and reveal that the drastically elevated E(m) of the metal substituted protein stems from a larger separation between the second-sphere Gln residue and the coordinated solvent in Mn(Fe)SOD relative to MnSOD, which causes a weakening of the corresponding H-bond interaction in the oxidized state and alleviates steric crowding in the reduced state.

摘要

首次使用光谱和计算方法研究了氧化和还原形式的锰取代铁超氧化物歧化酶(Mn(Fe)SOD)的活性部位结构。基于氧化 Mn(Fe)SOD 的电子吸收、圆二色性 (CD)、磁圆二色性 (MCD) 和变温变场 MCD 数据,我们提出该物种的活性部位与野生型锰 SOD (MnSOD) 几乎相同,两者都含有一个位于三角双锥配体环境中的金属离子。这一假设得到了通过对氧化和还原状态下的完整 Mn(Fe)SOD 蛋白质模型以及比较的野生型 (WT) MnSOD 进行量子力学/分子力学 (QM/MM) 计算的证实。WT MnSOD 和 Mn(Fe)SOD 的 QM/MM 优化活性部位之间的主要区别在于金属取代蛋白中较小的(His)N-Mn-N(His)赤道角和较长的(Gln146(69))NH···O(sol) H 键距离。重要的是,这些适度的几何差异与我们为氧化蛋白获得的光谱数据以及以前报道的还原 Mn(Fe)SOD 和 MnSOD 的高场电子顺磁共振谱一致。由于 Mn(Fe)SOD 的还原中点电位 (E(m)) 比 MnSOD 高近 700 mV,这足以解释金属取代物种缺乏 SOD 活性(Vance,C.K.;Miller,A.F. Biochemistry 2001,40,13079-13087),我们对实验验证的 QM/MM 优化 Mn(Fe)SOD 和 MnSOD 模型进行了 E(m)'s 计算。这些计算正确地再现了实验趋势,并揭示了金属取代蛋白中急剧升高的 E(m) 源自 Mn(Fe)SOD 中第二球 Gln 残基与配位溶剂之间的更大分离,这导致氧化状态下相应 H 键相互作用减弱,还原状态下空间拥挤减轻。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验