Schwartz A L, Yikilmaz E, Vance C K, Vathyam S, Koder R L, Miller A F
Department of Chemistry, University of Kentucky, Lexington 40506-0055, USA.
J Inorg Biochem. 2000 Jul 1;80(3-4):247-56. doi: 10.1016/s0162-0134(00)00086-6.
We are addressing the puzzling metal ion specificity of Fe- and Mn-containing superoxide dismutases (SODs) [see C.K.Vance, A.-F. Miller. J. Am. Chem. Soc. 120(3) (1998) 461-467]. Here, we test the significance to activity and active site integrity of the Gln side chain at the center of the active site hydrogen bond network. We have generated a mutant of MnSOD with the active site Gln in the location characteristic of Fe-specific SODs. The active site is similar to that of MnSOD when Mn2+, Fe3+ or Fe2+ are bound, based on EPR and NMR spectroscopy. However, the mutant's Fe-supported activity is at least 7% that of FeSOD, in contrast to Fe(Mn)SOD, which has 0% of FeSOD's activity. Thus, moving the active site Gln converts Mn-specific SOD into a cambialistic SOD and the Gln proves to be important but not the sole determinant of metal-ion specificity. Indeed, subtle differences in the spectra of Mn2+, Fe3+ and 1H in the presence of Fe2+ distinguish the G77Q, Q146A mut-(Mn)SOD from WT (Mn)SOD, and may prove to be correlated with metal ion activity. We have directly observed the side chain of the active site Gln in Fe2+ SOD and Fe2+ (Mn)SOD by 15N NMR. The very different chemical shifts indicate that the active site Gln interacts differently with Fe2+ in the two proteins. Since a shorter distance from Gln to Fe and stronger interaction with Fe correlate with a lower Em in Fe(Mn)SOD, Gln has the effect of destabilizing additional electron density on the metal ion. It may do this by stabilizing OH- coordinated to the metal ion.
我们正在研究含Fe和Mn的超氧化物歧化酶(SOD)令人费解的金属离子特异性[见C.K.万斯、A.-F.米勒,《美国化学会志》120(3) (1998) 461 - 467]。在此,我们测试活性位点氢键网络中心的Gln侧链对活性和活性位点完整性的重要性。我们已构建了一个MnSOD突变体,其活性位点Gln处于Fe特异性SOD特有的位置。基于电子顺磁共振(EPR)和核磁共振(NMR)光谱,当结合Mn2 +、Fe3 +或Fe2 +时,该突变体的活性位点与MnSOD的相似。然而,与Fe(Mn)SOD(其具有FeSOD活性的0%)相反,该突变体由Fe支持的活性至少是FeSOD的7%。因此,移动活性位点Gln可将Mn特异性SOD转变为兼性SOD,并且Gln被证明是重要的,但不是金属离子特异性的唯一决定因素。实际上,在存在Fe2 +的情况下,Mn2 +、Fe3 +和1H光谱的细微差异将G77Q、Q146A突变体 - (Mn)SOD与野生型(Mn)SOD区分开来,并且可能证明与金属离子活性相关。我们通过15N NMR直接观察了Fe2 + SOD和Fe2 +(Mn)SOD中活性位点Gln的侧链。非常不同的化学位移表明活性位点Gln在这两种蛋白质中与Fe2 +的相互作用不同。由于在Fe(Mn)SOD中从Gln到Fe的距离较短以及与Fe的相互作用较强与较低的Em相关,Gln具有使金属离子上额外电子密度不稳定的作用。它可能通过稳定与金属离子配位的OH - 来做到这一点。