Miller Anne-Frances
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA.
Acc Chem Res. 2008 Apr;41(4):501-10. doi: 10.1021/ar700237u. Epub 2008 Apr 1.
Metalloenzymes catalyze some of the most demanding reactions in biochemistry, thereby enabling organisms to extract energy from redox reactions and utilize inorganic starting materials such as N 2 and CH 4. Bound metal ions bring to enzymes greater chemical versatility and reactivity than would be possible from amino acids alone. However the host proteins must control this broad reactivity, activating the metal for the intended reaction while excluding the rest of its chemical repertoire. To this end, metalloproteins must control the metal ion reduction midpoint potential ( E m), because the E m determines what redox reactions are possible. We have documented potent redox tuning in Fe- and Mn-containing superoxide dismutases (FeSODs and MnSODs), and manipulated it to generate FeSOD variants with E ms spanning 900 mV (21 kcal/mol or 87 kJ/mol) with retention of overall structure. This achievement demonstrates possibilities and strategies with great promise for efforts to design or modify catalytic metal sites. FeSODs and MnSODs oxidize and reduce superoxide in alternating reactions that are coupled to proton transfer, wherein the metal site is believed to cycle between M3+ x OH- and M2+ x OH2 (M = Fe or Mn). Thus the E m reflects the ease both of reducing the metal ion and of protonating the coordinated solvent molecule. Moreover similar E ms are achieved by Fe-specific and Mn-specific SODs despite the very different intrinsic E(m)s of high-spin Fe3+/2+ and Mn3+/2+. We provide evidence that E(m) depression by some 300 mV can be achieved via a key enforced H-bond that appears able to disfavor proton acquisition by coordinated solvent. Based on 15N-nuclear magnetic resonance (NMR), stronger H-bond donation to coordinated solvent can explain the greater redox depression achieved by the Mn-specific SOD protein compared with the Fe-specific protein. Furthermore, by manipulating the strength and polarity of this one H-bond, with comparatively minor perturbation to active site atomic and electronic structure, we succeeded in raising the E m of FeSOD by more than 660 mV, apparently by a combination of promoting protonation of coordinated solvent and providing an energetically favorable source of a redox-coupled proton. These studies have combined the use of electron paramagnetic resonance (EPR), NMR, magnetic circular dichroism (MCD), and optical spectrophotometry to characterize the electronic structures of the various metal sites, with complementary density functional theoretical (DFT) calculations, NMR spectroscopy, and X-ray crystallography to define the protein structures and protonation states. Overall, we have generated structurally homologous Fe sites that span some 900 mV, and have demonstrated the enormous redox tuning accessible via the energies associated with proton transfer coupled to electron transfer. In this regard, we note the possible significance of coordinated solvent molecules in numerous biological redox-active metal sites besides that of SOD.
金属酶催化生物化学中一些最具挑战性的反应,从而使生物体能够从氧化还原反应中提取能量,并利用无机原料,如N₂和CH₄。与仅由氨基酸组成的酶相比,结合的金属离子赋予酶更大的化学多样性和反应活性。然而,宿主蛋白必须控制这种广泛的反应活性,激活金属以进行预期反应,同时排除其其余的化学活性。为此,金属蛋白必须控制金属离子还原中点电位(Eₘ),因为Eₘ决定了哪些氧化还原反应是可能的。我们已经记录了含铁和含锰超氧化物歧化酶(FeSOD和MnSOD)中强大的氧化还原调节作用,并对其进行了调控,以生成Eₘ跨度为900 mV(21 kcal/mol或87 kJ/mol)的FeSOD变体,同时保留整体结构。这一成果展示了在设计或修饰催化金属位点方面极具前景的可能性和策略。FeSOD和MnSOD在与质子转移偶联的交替反应中氧化和还原超氧化物,其中金属位点被认为在M³⁺ₓOH⁻和M²⁺ₓOH₂(M = Fe或Mn)之间循环。因此,Eₘ既反映了还原金属离子的难易程度,也反映了使配位溶剂分子质子化的难易程度。此外,尽管高自旋Fe³⁺/²⁺和Mn³⁺/²⁺的固有Eₘ非常不同,但铁特异性和锰特异性SOD实现了相似的Eₘ。我们提供的证据表明,通过一个关键的强制氢键可以使Eₘ降低约300 mV,该氢键似乎能够不利于配位溶剂获取质子。基于¹⁵N核磁共振(NMR),与配位溶剂更强的氢键供体可以解释锰特异性SOD蛋白比铁特异性蛋白实现更大的氧化还原降低。此外,通过操纵这一个氢键的强度和极性,对活性位点的原子和电子结构造成相对较小的扰动,我们成功地将FeSOD的Eₘ提高了超过660 mV,显然是通过促进配位溶剂质子化和提供氧化还原偶联质子的能量有利来源的组合。这些研究结合了电子顺磁共振(EPR)、NMR、磁圆二色性(MCD)和光学分光光度法的使用,以表征各种金属位点的电子结构,并通过互补的密度泛函理论(DFT)计算、NMR光谱和X射线晶体学来确定蛋白质结构和质子化状态。总体而言,我们生成了跨度约为900 mV的结构同源铁位点,并证明了通过与电子转移偶联的质子转移相关的能量可实现巨大的氧化还原调节。在这方面,我们注意到除了SOD之外,配位溶剂分子在众多生物氧化还原活性金属位点中可能具有的重要意义。