Suppr超能文献

使用高效双聚类算法和并行坐标可视化技术识别基因表达数据中的连贯模式。

Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization.

作者信息

Cheng Kin-On, Law Ngai-Fong, Siu Wan-Chi, Liew Alan Wee-Chung

机构信息

School of Information and Communication Technology, Griffith University, Gold Coast Campus, QLD 4222, Queensland, Australia.

出版信息

BMC Bioinformatics. 2008 Apr 23;9:210. doi: 10.1186/1471-2105-9-210.

Abstract

BACKGROUND

The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only 1. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.

RESULTS

We develop a novel and efficient biclustering algorithm which can be regarded as a greedy version of an existing algorithm known as pCluster algorithm. By relaxing the constraint in homogeneity, the proposed algorithm has polynomial-time complexity in the worst case instead of exponential-time complexity as in the pCluster algorithm. Experiments on artificial datasets verify that our algorithm can identify both additive-related and multiplicative-related biclusters in the presence of overlap and noise. Biologically significant biclusters have been validated on the yeast cell-cycle expression dataset using Gene Ontology annotations. Comparative study shows that the proposed approach outperforms several existing biclustering algorithms. We also provide an interactive exploratory tool based on PC plot visualization for determining the parameters of our biclustering algorithm.

CONCLUSION

We have proposed a novel biclustering algorithm which works with PC plots for an interactive exploratory analysis of gene expression data. Experiments show that the biclustering algorithm is efficient and is capable of detecting co-regulated genes. The interactive analysis enables an optimum parameter determination in the biclustering algorithm so as to achieve the best result. In future, we will modify the proposed algorithm for other bicluster models such as the coherent evolution model.

摘要

背景

DNA微阵列技术能够在数十种/数百种不同条件下测量数千个基因的表达水平。在微阵列数据中,具有相似功能的基因通常仅在特定条件下共表达。因此,在发现这些共表达基因方面,同时对基因和条件进行聚类的双聚类方法优于传统聚类技术。已经使用不同的双聚类公式开发了各种双聚类算法。不幸的是,许多有用的公式会导致NP完全问题。在本文中,我们研究了一种识别一种流行的双聚类类型(称为加法模型)的有效方法。此外,平行坐标(PC)图用于双聚类的可视化和分析。

结果

我们开发了一种新颖且高效的双聚类算法,它可以被视为一种现有算法(称为pCluster算法)的贪心版本。通过放宽同质性约束,所提出的算法在最坏情况下具有多项式时间复杂度,而不像pCluster算法那样具有指数时间复杂度。在人工数据集上的实验验证了我们的算法能够在存在重叠和噪声的情况下识别与加法相关和与乘法相关的双聚类。使用基因本体注释在酵母细胞周期表达数据集上验证了具有生物学意义的双聚类。比较研究表明,所提出的方法优于几种现有的双聚类算法。我们还提供了一个基于PC图可视化的交互式探索工具,用于确定我们双聚类算法的参数。

结论

我们提出了一种新颖的双聚类算法,它与PC图一起用于基因表达数据的交互式探索分析。实验表明,该双聚类算法是有效的,并且能够检测共调控基因。交互式分析能够在双聚类算法中确定最佳参数以获得最佳结果。未来,我们将针对其他双聚类模型(如相干进化模型)修改所提出的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f794/2396181/de3744c3ec3a/1471-2105-9-210-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验