Liew Alan Wee-Chung, Law Ngai-Fong, Yan Hong
School of Information and Communication Technology, Gold Coast Campus, Griffith University, QLD 4222, Australia.
Recent Pat DNA Gene Seq. 2011 Aug;5(2):117-25. doi: 10.2174/187221511796392097.
In DNA microarray experiments, discovering groups of genes that share similar transcriptional characteristics is instrumental in functional annotation, tissue classification and motif identification. However, in many situations a subset of genes only exhibits a consistent pattern over a subset of conditions. Although used extensively in gene expression data analysis, conventional clustering algorithms that consider the entire row or column in an expression matrix can therefore fail to detect useful patterns in the data. Recently, biclustering has been proposed as a powerful computational tool to detect subsets of genes that exhibit consistent pattern over subsets of conditions. In this article, we review several recent patents in bicluster analysis, and in particular, highlight a recent patent from our group about a novel geometric-based biclustering method that handles the class of bicluster patterns with linear coherent variation across the row and/or column dimension. This class of bicluster patterns is of particular importance since it subsumes all constant, additive, and multiplicative bicluster patterns normally used in gene expression data analysis.
在DNA微阵列实验中,发现具有相似转录特征的基因群组有助于进行功能注释、组织分类和基序识别。然而,在许多情况下,一部分基因仅在一部分条件下呈现出一致的模式。尽管传统聚类算法在基因表达数据分析中被广泛使用,但这些考虑表达矩阵整行或整列的算法可能无法检测到数据中的有用模式。最近,双聚类已被提出作为一种强大的计算工具,用于检测在部分条件下呈现一致模式的基因子集。在本文中,我们回顾了双聚类分析领域的几项近期专利,特别强调了我们团队最近的一项专利,该专利涉及一种基于几何的新型双聚类方法,可处理在行和/或列维度上具有线性相干变化的双聚类模式类别。这类双聚类模式尤为重要,因为它涵盖了基因表达数据分析中通常使用的所有恒定、相加和相乘双聚类模式。