Gross Jeferson, Meurer Jörg, Bhattacharya Debashish
University of Iowa, Department of Biological Sciences and the Roy J, Carver Center for Comparative Genomics, 446 Biology Building, Iowa City, Iowa 52242, USA.
BMC Evol Biol. 2008 Apr 23;8:117. doi: 10.1186/1471-2148-8-117.
Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 - 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage.
Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH) are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus.
Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT).
水平基因转移(HGT)对于微生物系统发育学家而言是一个棘手的现实问题。鉴于在现代细菌染色体中观察到较高的HGT发生率,可以设想古代原核生物基因组必定同样是嵌合的。但是在哪里能找到一个保持其祖先状态的古代原核生物基因组来解决这个问题呢?一个绝佳的候选对象是十亿多年前被异养原生生物利用的蓝藻内共生体,它进而产生了质体。内共生体的遗传残余物仍作为一个高度简化的染色体保留在质体中,该染色体编码54 - 264个基因。这些数据为评估古代蓝藻谱系中的基因组嵌合现象提供了理想的研究对象。
在这里我们证明,嗜极端红藻蓝丝藻目(Cyanidiales)中质体编码的甲萘醌/叶绿醌生物合成基因簇的起源与蓝藻谱系相矛盾。这些基因是一个祖先基因簇的遗迹,与绿弯菌门/γ-变形菌纲中的同源物相关,我们推测该基因簇是通过HGT在质体的祖先中建立的,从而提供了古代蓝藻基因组嵌合现象的一个“印记”。除了menB之外,原始基因簇的四个组成部分(menF、menD、menC和menH)现在在大多数非蓝丝藻目藻类和植物的核基因组中作为名为PHYLLO的独特四基因融合体进行编码。这些基因在植物界和色藻界中是单系的,这表明通过HGT引入祖先蓝藻的基因座随着时间推移转移到了宿主细胞核中。
我们的研究为古代蓝藻中存在基因组嵌合现象提供了明确的证据。此外,我们还表明,在质体的蓝藻祖先中通过HGT起源的基因通过内共生基因转移(EGT)进入了宿主细胞核。