Armañanzas Rubén, Inza Iñaki, Larrañaga Pedro
Department of Computer Science and Artificial Intelligence, University of the Basque Country, Paseo Manuel Lardizabal 1, 20018 Donostia-San Sebastián, Gipuzkoa, Spain.
Comput Methods Programs Biomed. 2008 Aug;91(2):110-21. doi: 10.1016/j.cmpb.2008.02.010. Epub 2008 Apr 22.
The main purpose of a gene interaction network is to map the relationships of the genes that are out of sight when a genomic study is tackled. DNA microarrays allow the measure of gene expression of thousands of genes at the same time. These data constitute the numeric seed for the induction of the gene networks. In this paper, we propose a new approach to build gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling. The interactions induced by the Bayesian classifiers are based both on the expression levels and on the phenotype information of the supervised variable. Feature selection and bootstrap resampling add reliability and robustness to the overall process removing the false positive findings. The consensus among all the induced models produces a hierarchy of dependences and, thus, of variables. Biologists can define the depth level of the model hierarchy so the set of interactions and genes involved can vary from a sparse to a dense set. Experimental results show how these networks perform well on classification tasks. The biological validation matches previous biological findings and opens new hypothesis for future studies.
基因相互作用网络的主要目的是描绘在进行基因组研究时那些难以察觉的基因之间的关系。DNA微阵列能够同时测量数千个基因的表达情况。这些数据构成了诱导基因网络的数字种子。在本文中,我们提出了一种通过贝叶斯分类器、变量选择和自助重采样来构建基因网络的新方法。贝叶斯分类器诱导的相互作用既基于表达水平,也基于监督变量的表型信息。特征选择和自助重采样为整个过程增添了可靠性和稳健性,消除了假阳性结果。所有诱导模型之间的共识产生了一个依赖层次结构,进而也是变量的层次结构。生物学家可以定义模型层次结构的深度级别,这样所涉及的相互作用和基因集可以从稀疏集变化到密集集。实验结果表明这些网络在分类任务中表现良好。生物学验证与先前的生物学发现相符,并为未来的研究开启了新的假设。