Suppr超能文献

由受检测下限影响的观测值估计的尤登指数和最佳切点。

Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection.

作者信息

Ruopp Marcus D, Perkins Neil J, Whitcomb Brian W, Schisterman Enrique F

机构信息

Division of Epidemiology, Statistics and Prevention Research, National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 6100 Executive Blvd, 7B03, Rockville Bethesda, MD, USA.

出版信息

Biom J. 2008 Jun;50(3):419-30. doi: 10.1002/bimj.200710415.

Abstract

The receiver operating characteristic (ROC) curve is used to evaluate a biomarker's ability for classifying disease status. The Youden Index (J), the maximum potential effectiveness of a biomarker, is a common summary measure of the ROC curve. In biomarker development, levels may be unquantifiable below a limit of detection (LOD) and missing from the overall dataset. Disregarding these observations may negatively bias the ROC curve and thus J. Several correction methods have been suggested for mean estimation and testing; however, little has been written about the ROC curve or its summary measures. We adapt non-parametric (empirical) and semi-parametric (ROC-GLM [generalized linear model]) methods and propose parametric methods (maximum likelihood (ML)) to estimate J and the optimal cut-point (c *) for a biomarker affected by a LOD. We develop unbiased estimators of J and c * via ML for normally and gamma distributed biomarkers. Alpha level confidence intervals are proposed using delta and bootstrap methods for the ML, semi-parametric, and non-parametric approaches respectively. Simulation studies are conducted over a range of distributional scenarios and sample sizes evaluating estimators' bias, root-mean square error, and coverage probability; the average bias was less than one percent for ML and GLM methods across scenarios and decreases with increased sample size. An example using polychlorinated biphenyl levels to classify women with and without endometriosis illustrates the potential benefits of these methods. We address the limitations and usefulness of each method in order to give researchers guidance in constructing appropriate estimates of biomarkers' true discriminating capabilities.

摘要

受试者工作特征(ROC)曲线用于评估生物标志物对疾病状态进行分类的能力。约登指数(J)是生物标志物的最大潜在效能,是ROC曲线的一种常见汇总指标。在生物标志物开发过程中,低于检测限(LOD)的水平可能无法量化,并且会在整个数据集中缺失。忽略这些观察结果可能会对ROC曲线产生负偏倚,从而影响约登指数。已经提出了几种用于均值估计和检验的校正方法;然而,关于ROC曲线或其汇总指标的文献却很少。我们采用非参数(经验)和半参数(ROC-广义线性模型[ROC-GLM])方法,并提出参数方法(最大似然[ML])来估计受LOD影响的生物标志物的J和约登指数以及最佳切点(c*)。我们通过ML为正态分布和伽马分布的生物标志物开发了J和c*的无偏估计量。分别针对ML、半参数和非参数方法,使用德尔塔法和自助法提出了α水平置信区间。在一系列分布场景和样本量下进行了模拟研究,评估估计量的偏差、均方根误差和覆盖概率;在各种场景下,ML和GLM方法的平均偏差均小于1%,并且随着样本量的增加而减小。一个使用多氯联苯水平对患有和未患有子宫内膜异位症的女性进行分类的例子说明了这些方法的潜在益处。我们阐述了每种方法的局限性和实用性,以便为研究人员在构建生物标志物真实鉴别能力的适当估计方面提供指导。

相似文献

3
Receiver operating characteristic curve inference from a sample with a limit of detection.
Am J Epidemiol. 2007 Feb 1;165(3):325-33. doi: 10.1093/aje/kwk011. Epub 2006 Nov 16.
5
Exact confidence interval estimation for the Youden index and its corresponding optimal cut-point.
Comput Stat Data Anal. 2012 May 1;56(5):1103-1114. doi: 10.1016/j.csda.2010.11.023. Epub 2010 Dec 7.
6
The Youden Index and the optimal cut-point corrected for measurement error.
Biom J. 2005 Aug;47(4):428-41. doi: 10.1002/bimj.200410133.
7
Adjustment for measurement error in evaluating diagnostic biomarkers by using an internal reliability sample.
Stat Med. 2013 Nov 30;32(27):4709-25. doi: 10.1002/sim.5878. Epub 2013 Jun 14.
8
Interval estimation for the Youden index of a continuous diagnostic test with verification biased data.
Stat Methods Med Res. 2025 Apr;34(4):796-811. doi: 10.1177/09622802251322989. Epub 2025 Mar 20.
9
Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples.
Epidemiology. 2005 Jan;16(1):73-81. doi: 10.1097/01.ede.0000147512.81966.ba.

引用本文的文献

3
Performance of 4 Methods to Assess Health-Related Social Needs.
JAMA Netw Open. 2025 Aug 1;8(8):e2527426. doi: 10.1001/jamanetworkopen.2025.27426.
6
Corneal epithelial aberrations: a novel diagnostic tool for keratoconus and forme fruste keratoconus.
Eye Vis (Lond). 2025 Aug 6;12(1):31. doi: 10.1186/s40662-025-00449-x.
7
Growth Differentiation Factor 15 Predicts Cardiovascular Events in Peripheral Artery Disease.
Biomolecules. 2025 Jul 11;15(7):991. doi: 10.3390/biom15070991.
8
Radiomics based on MRI and F-FDG PET/CT predicts response to EGFR-TKI therapy based on primary NSCLC and brain metastasis.
Neurooncol Adv. 2025 May 30;7(1):vdaf100. doi: 10.1093/noajnl/vdaf100. eCollection 2025 Jan-Dec.
9
Rapid Screening of Methicillin-Resistant Using MALDI-TOF MS and Machine Learning: A Randomized, Multicenter Study.
Anal Chem. 2025 Jul 29;97(29):15667-15675. doi: 10.1021/acs.analchem.5c01286. Epub 2025 Jul 15.

本文引用的文献

1
Receiver operating characteristic curve inference from a sample with a limit of detection.
Am J Epidemiol. 2007 Feb 1;165(3):325-33. doi: 10.1093/aje/kwk011. Epub 2006 Nov 16.
3
The Youden Index and the optimal cut-point corrected for measurement error.
Biom J. 2005 Aug;47(4):428-41. doi: 10.1002/bimj.200410133.
4
Environmental PCB exposure and risk of endometriosis.
Hum Reprod. 2005 Jan;20(1):279-85. doi: 10.1093/humrep/deh575. Epub 2004 Oct 28.
5
Index for rating diagnostic tests.
Cancer. 1950 Jan;3(1):32-5. doi: 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3.
6
Distribution-free ROC analysis using binary regression techniques.
Biostatistics. 2002 Sep;3(3):421-32. doi: 10.1093/biostatistics/3.3.421.
7
Measuring the effectiveness of diagnostic markers in the presence of measurement error through the use of ROC curves.
Stat Med. 2000 Aug 30;19(16):2115-29. doi: 10.1002/1097-0258(20000830)19:16<2115::aid-sim529>3.0.co;2-m.
8
The effect of random measurement error on receiver operating characteristic (ROC) curves.
Stat Med. 2000 Jan 15;19(1):61-70. doi: 10.1002/(sici)1097-0258(20000115)19:1<61::aid-sim297>3.0.co;2-a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验