Suppr超能文献

使用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)和机器学习快速筛查耐甲氧西林菌:一项随机多中心研究。

Rapid Screening of Methicillin-Resistant Using MALDI-TOF MS and Machine Learning: A Randomized, Multicenter Study.

作者信息

Yong Dongeun, Park Jeong Su, Kim Kyungnam, Seo Donggun, Kim Dong-Chan, Kim Jae-Seok, Park Jong-Min

机构信息

Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.

Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do 13620, Republic of Korea.

出版信息

Anal Chem. 2025 Jul 29;97(29):15667-15675. doi: 10.1021/acs.analchem.5c01286. Epub 2025 Jul 15.

Abstract

Methicillin-resistant (MRSA) is a major cause of healthcare-associated infections including bacteremia. The rapid detection of MRSA is essential for prompt treatment and improved outcomes. However, traditional MRSA screening and confirmatory tests based on bacterial cultures with antimicrobial susceptibility tests and/or molecular diagnostics are time-consuming (>2 days), labor-intensive, and costly. We report that AMRQuest software, which was developed using logistic regression-based machine learning and matrix-assisted laser desorption/ionization-time-of-flight spectra of isolates, can be successfully implemented in clinical microbiology laboratories to screen MRSA and identify bacterial species simultaneously, with the cefoxitin disk diffusion test as a reference. Analytical sensitivity, specificity, percent agreement, and Cohen's kappa values were calculated to determine the accuracy of the AMRQuest software. The minimum sample size of the testing set for statistical analysis was determined considering the local prevalence of MRSA infections. MRSA screening was performed using 537 consecutive isolates, including 231 MRSA and 306 methicillin-susceptible isolates, from three tertiary-care hospitals. The results from the AMRQuest software were similar to those obtained using the reference method, cefoxitin disk diffusion testing, making it a powerful method for the rapid detection of MRSA prior to traditional antibiotic resistance testing.

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)是包括菌血症在内的医疗保健相关感染的主要原因。快速检测MRSA对于及时治疗和改善治疗结果至关重要。然而,基于细菌培养并结合抗菌药敏试验和/或分子诊断的传统MRSA筛查和确证试验耗时较长(>2天), labor-intensive,且成本高昂。我们报告称,AMRQuest软件利用基于逻辑回归的机器学习和分离株的基质辅助激光解吸/电离飞行时间光谱开发而成,可在临床微生物实验室成功应用,以同时筛查MRSA并鉴定细菌种类,以头孢西丁纸片扩散试验作为参考。计算分析灵敏度、特异性、一致百分比和科恩kappa值以确定AMRQuest软件的准确性。考虑到MRSA感染的当地流行情况,确定了用于统计分析的测试集的最小样本量。使用来自三家三级护理医院的537株连续分离株进行MRSA筛查,其中包括231株MRSA和306株甲氧西林敏感分离株。AMRQuest软件的结果与使用参考方法头孢西丁纸片扩散试验获得的结果相似,这使其成为在传统抗生素耐药性检测之前快速检测MRSA的有力方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1342/12311893/68f39a824388/ac5c01286_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验