Suppr超能文献

使用微型正电子发射断层扫描(microPET)技术和超弹性变形测量自发性高血压大鼠(SHR)左心室舒张期变形的区域变化。

Measuring regional changes in the diastolic deformation of the left ventricle of SHR rats using microPET technology and hyperelastic warping.

作者信息

Veress Alexander I, Weiss Jeffrey A, Huesman Ronald H, Reutter Bryan W, Taylor Scott E, Sitek Arek, Feng Bing, Yang Yongfeng, Gullberg Grant T

机构信息

Department of Bioengineering, The Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.

出版信息

Ann Biomed Eng. 2008 Jul;36(7):1104-17. doi: 10.1007/s10439-008-9497-9. Epub 2008 Apr 24.

Abstract

The objective of this research was to assess applicability of a technique known as hyperelastic warping for the measurement of local strains in the left ventricle (LV) directly from microPET image data sets. The technique uses differences in image intensities between template (reference) and target (loaded) image data sets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target images. For validation, the template image was defined as the end-systolic microPET image data set from a Wistar Kyoto (WKY) rat. The target image was created by mapping the template image using the deformation results obtained from a FE model of diastolic filling. Regression analysis revealed highly significant correlations between the simulated forward FE solution and image derived warping predictions for fiber stretch (R (2) = 0.96), circumferential strain (R (2) = 0.96), radial strain (R (2) = 0.93), and longitudinal strain (R (2) = 0.76) (p < 0.001 for all cases). The technology was applied to microPET image data of two spontaneously hypertensive rats (SHR) and a WKY control. Regional analysis revealed that, the lateral freewall in the SHR subjects showed the greatest deformation compared with the other wall segments. This work indicates that warping can accurately predict the strain distributions during diastole from the analysis of microPET data sets.

摘要

本研究的目的是评估一种称为超弹性变形的技术直接从微型正电子发射断层扫描(microPET)图像数据集测量左心室(LV)局部应变的适用性。该技术利用模板(参考)图像数据集和目标(加载)图像数据集之间的图像强度差异来生成体力,使模板的有限元(FE)表示发生变形,从而与目标图像配准。为了进行验证,模板图像定义为来自Wistar Kyoto(WKY)大鼠的收缩末期microPET图像数据集。通过使用舒张期充盈有限元模型获得的变形结果对模板图像进行映射来创建目标图像。回归分析显示,模拟的正向有限元解与图像衍生的变形预测在纤维拉伸(R(2)=0.96)、圆周应变(R(2)=0.96)、径向应变(R(2)=0.93)和纵向应变(R(2)=0.76)方面具有高度显著的相关性(所有情况p<0.001)。该技术应用于两只自发性高血压大鼠(SHR)和一只WKY对照的microPET图像数据。区域分析显示,与其他壁段相比,SHR受试者的外侧游离壁变形最大。这项工作表明,通过对microPET数据集的分析,变形可以准确预测舒张期的应变分布。

相似文献

3
Strain measurement in the left ventricle during systole with deformable image registration.
Med Image Anal. 2009 Apr;13(2):354-61. doi: 10.1016/j.media.2008.07.004. Epub 2008 Sep 17.
4
Theoretical quality assessment of myocardial elastography with in vivo validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Nov;54(11):2233-45. doi: 10.1109/tuffc.2007.528.
5
Susceptibility to systolic dysfunction in the myocardium from chronically infarcted spontaneously hypertensive rats.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H372-8. doi: 10.1152/ajpheart.01024.2007. Epub 2007 Nov 9.
8
Strain measurement in coronary arteries using intravascular ultrasound and deformable images.
J Biomech Eng. 2002 Dec;124(6):734-41. doi: 10.1115/1.1519279.
9
Quantitative analysis of left ventricular strain using cardiac computed tomography.
Eur J Radiol. 2014 Mar;83(3):e123-30. doi: 10.1016/j.ejrad.2013.11.026. Epub 2013 Dec 7.
10
Diastolic wall strain: a simple marker of abnormal cardiac mechanics.
Cardiovasc Ultrasound. 2014 Oct 3;12:40. doi: 10.1186/1476-7120-12-40.

引用本文的文献

2
An image registration framework to estimate 3D myocardial strains from cine cardiac MRI in mice.
Funct Imaging Model Heart. 2021 Jun;12738:273-284. doi: 10.1007/978-3-030-78710-3_27. Epub 2021 Jun 18.
3
Novel Methodology for Measuring Regional Myocardial Efficiency.
IEEE Trans Med Imaging. 2021 Jun;40(6):1711-1725. doi: 10.1109/TMI.2021.3065219. Epub 2021 Jun 1.
4
Estimating cardiomyofiber strain in vivo by solving a computational model.
Med Image Anal. 2021 Feb;68:101932. doi: 10.1016/j.media.2020.101932. Epub 2020 Dec 5.
5
Three-dimensional biventricular strains in pulmonary arterial hypertension patients using hyperelastic warping.
Comput Methods Programs Biomed. 2020 Jun;189:105345. doi: 10.1016/j.cmpb.2020.105345. Epub 2020 Jan 17.
7
A Plugin Framework for Extending the Simulation Capabilities of FEBio.
Biophys J. 2018 Nov 6;115(9):1630-1637. doi: 10.1016/j.bpj.2018.09.016. Epub 2018 Sep 26.
8
3-D Measurements of Acceleration-Induced Brain Deformation via Harmonic Phase Analysis and Finite-Element Models.
IEEE Trans Biomed Eng. 2019 May;66(5):1456-1467. doi: 10.1109/TBME.2018.2874591. Epub 2018 Oct 8.
10
Regularization-Free Strain Mapping in Three Dimensions, With Application to Cardiac Ultrasound.
J Biomech Eng. 2019 Jan 1;141(1):0110101-01101011. doi: 10.1115/1.4041576.

本文引用的文献

4
Combined CT-PET criteria for myocardial viability and scar: a preliminary report.
Int J Cardiovasc Imaging. 2004 Dec;20(6):487-91. doi: 10.1007/s10554-004-2784-0.
5
Reproducibility of left ventricular volume and ejection fraction measurements in rat using pinhole gated SPECT.
Eur J Nucl Med Mol Imaging. 2005 Feb;32(2):211-20. doi: 10.1007/s00259-004-1649-z. Epub 2004 Sep 15.
6
Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure.
Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H2132-7. doi: 10.1152/ajpheart.00405.2004. Epub 2004 Jul 1.
7
Strain measurement in coronary arteries using intravascular ultrasound and deformable images.
J Biomech Eng. 2002 Dec;124(6):734-41. doi: 10.1115/1.1519279.
8
Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats.
Hypertension. 2003 Feb;41(2):249-54. doi: 10.1161/01.hyp.0000052832.96564.0b.
10
Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy.
J Am Coll Cardiol. 2002 Jul 17;40(2):271-7. doi: 10.1016/s0735-1097(02)01967-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验