Zou Hua, Xi Ce, Zhao Xiaodan, Koh Angela S, Gao Fei, Su Yi, Tan Ru-San, Allen John, Lee Lik Chuan, Genet Martin, Zhong Liang
National Heart Centre Singapore, Singapore, Singapore.
Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States.
Front Physiol. 2018 Sep 19;9:1295. doi: 10.3389/fphys.2018.01295. eCollection 2018.
Heart failure (HF) imposes a major global health care burden on society and suffering on the individual. About 50% of HF patients have preserved ejection fraction (HFpEF). More intricate and comprehensive measurement-focused imaging of multiple strain components may aid in the diagnosis and elucidation of this disease. Here, we describe the development of a semi-automated hyperelastic warping method for rapid comprehensive assessment of biventricular circumferential, longitudinal, and radial strains that is physiological meaningful and reproducible. We recruited and performed cardiac magnetic resonance (CMR) imaging on 30 subjects [10 HFpEF, 10 HF with reduced ejection fraction patients (HFrEF) and 10 healthy controls]. In each subject, a three-dimensional heart model including left ventricle (LV), right ventricle (RV), and septum was reconstructed from CMR images. The hyperelastic warping method was used to reference the segmented model with the target images and biventricular circumferential, longitudinal, and radial strain-time curves were obtained. The peak systolic strains are then measured and analyzed in this study. Intra- and inter-observer reproducibility of the biventricular peak systolic strains was excellent with all ICCs > 0.92. LV peak systolic circumferential, longitudinal, and radial strain, respectively, exhibited a progressive decrease in magnitude from healthy control→HFpEF→HFrEF: control (-15.5 ± 1.90, -15.6 ± 2.06, 41.4 ± 12.2%); HFpEF (-9.37 ± 3.23, -11.3 ± 1.76, 22.8 ± 13.1%); HFrEF (-4.75 ± 2.74, -7.55 ± 1.75, 10.8 ± 4.61%). A similar progressive decrease in magnitude was observed for RV peak systolic circumferential, longitudinal and radial strain: control (-9.91 ± 2.25, -14.5 ± 2.63, 26.8 ± 7.16%); HFpEF (-7.38 ± 3.17, -12.0 ± 2.45, 21.5 ± 10.0%); HFrEF (-5.92 ± 3.13, -8.63 ± 2.79, 15.2 ± 6.33%). Furthermore, septum peak systolic circumferential, longitudinal, and radial strain magnitude decreased gradually from healthy control to HFrEF: control (-7.11 ± 1.81, 16.3 ± 3.23, 18.5 ± 8.64%); HFpEF (-6.11 ± 3.98, -13.4 ± 3.02, 12.5 ± 6.38%); HFrEF (-1.42 ± 1.36, -8.99 ± 2.96, 3.35 ± 2.95%). The ROC analysis indicated LV peak systolic circumferential strain to be the most sensitive marker for differentiating HFpEF from healthy controls. Our results suggest that the hyperelastic warping method with the CMR-derived strains may reveal subtle impairment in HF biventricular mechanics, in particular despite a "normal" ventricular ejection fraction in HFpEF.
心力衰竭(HF)给社会带来了重大的全球医疗负担,并给个人带来痛苦。约50%的HF患者射血分数保留(HFpEF)。对多个应变分量进行更精细、全面的以测量为重点的成像,可能有助于该疾病的诊断和阐明。在此,我们描述了一种半自动超弹性变形方法的开发,用于快速全面评估双心室的圆周、纵向和径向应变,该方法具有生理意义且可重复。我们招募了30名受试者[10名HFpEF患者、10名射血分数降低的HF患者(HFrEF)和10名健康对照]并对其进行了心脏磁共振(CMR)成像。在每个受试者中,从CMR图像重建了包括左心室(LV)、右心室(RV)和室间隔的三维心脏模型。使用超弹性变形方法将分割模型与目标图像进行配准,并获得双心室圆周、纵向和径向应变-时间曲线。然后在本研究中测量和分析收缩期峰值应变。双心室收缩期峰值应变的观察者内和观察者间重复性极佳,所有组内相关系数(ICC)均>0.92。LV收缩期峰值圆周应变、纵向应变和径向应变分别呈现出从健康对照→HFpEF→HFrEF逐渐降低的趋势:对照组(-15.5±1.90,-15.6±2.06,41.4±12.2%);HFpEF组(-9.37±3.23,-11.3±1.76,22.8±13.1%);HFrEF组(-4.75±2.74,-7.55±1.75,10.8±4.61%)。RV收缩期峰值圆周应变、纵向应变和径向应变也观察到类似的逐渐降低趋势:对照组(-9.91±2.25,-14.5±2.63,26.8±7.16%);HFpEF组(-7.38±3.17,-12.0±2.45,21.5±10.0%);HFrEF组(-5.92±3.13,-8.63±2.79,15.2±6.33%)。此外,室间隔收缩期峰值圆周应变、纵向应变和径向应变的大小从健康对照到HFrEF逐渐降低:对照组(-7.11±1.81,16.3±3.23,18.5±8.64%);HFpEF组(-6.11±3.98,-13.4±3.02,12.5±6.38%);HFrEF组(-1.42±1.36,-8.99±2.96,3.35±2.95%)。ROC分析表明,LV收缩期峰值圆周应变是区分HFpEF与健康对照的最敏感标志物。我们的结果表明,结合CMR衍生应变的超弹性变形方法可能揭示HF双心室力学的细微损伤,特别是在HFpEF患者心室射血分数“正常”的情况下。