El-Naggar Mohamed Y, Gorby Yuri A, Xia Wei, Nealson Kenneth H
Department of Earth Sciences and Biological Sciences, University of Southern California, Los Angeles, California, USA.
Biophys J. 2008 Jul;95(1):L10-2. doi: 10.1529/biophysj.108.134411. Epub 2008 Apr 25.
The recent discovery of electrically conductive bacterial appendages has significant physiological, ecological, and biotechnological implications, but the mechanism of electron transport in these nanostructures remains unclear. We here report quantitative measurements of transport across bacterial nanowires produced by the dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, whose electron transport system is being investigated for renewable energy recovery in microbial fuel cells and bioremediation of heavy metals and radionuclides. The Shewanella nanowires display a surprising nonlinear electrical transport behavior, where the voltage dependence of the conductance reveals peaks indicating discrete energy levels with higher electronic density of states. Our results indicate that the molecular constituents along the Shewanella nanowires possess an intricate electronic structure that plays a role in mediating transport.
最近发现的导电细菌附属物具有重要的生理、生态和生物技术意义,但这些纳米结构中的电子传输机制仍不清楚。我们在此报告了对异化金属还原菌——嗜铁钩端螺旋菌MR-1产生的细菌纳米线中电子传输的定量测量,该菌的电子传输系统正用于微生物燃料电池中的可再生能源回收以及重金属和放射性核素的生物修复研究。嗜铁钩端螺旋菌纳米线表现出令人惊讶的非线性电传输行为,其中电导对电压的依赖性显示出峰值,表明存在具有更高电子态密度的离散能级。我们的结果表明,嗜铁钩端螺旋菌纳米线中的分子成分具有复杂的电子结构,该结构在介导电子传输中发挥作用。