Suppr超能文献

细菌纳米线中的分子态密度

The molecular density of states in bacterial nanowires.

作者信息

El-Naggar Mohamed Y, Gorby Yuri A, Xia Wei, Nealson Kenneth H

机构信息

Department of Earth Sciences and Biological Sciences, University of Southern California, Los Angeles, California, USA.

出版信息

Biophys J. 2008 Jul;95(1):L10-2. doi: 10.1529/biophysj.108.134411. Epub 2008 Apr 25.

Abstract

The recent discovery of electrically conductive bacterial appendages has significant physiological, ecological, and biotechnological implications, but the mechanism of electron transport in these nanostructures remains unclear. We here report quantitative measurements of transport across bacterial nanowires produced by the dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, whose electron transport system is being investigated for renewable energy recovery in microbial fuel cells and bioremediation of heavy metals and radionuclides. The Shewanella nanowires display a surprising nonlinear electrical transport behavior, where the voltage dependence of the conductance reveals peaks indicating discrete energy levels with higher electronic density of states. Our results indicate that the molecular constituents along the Shewanella nanowires possess an intricate electronic structure that plays a role in mediating transport.

摘要

最近发现的导电细菌附属物具有重要的生理、生态和生物技术意义,但这些纳米结构中的电子传输机制仍不清楚。我们在此报告了对异化金属还原菌——嗜铁钩端螺旋菌MR-1产生的细菌纳米线中电子传输的定量测量,该菌的电子传输系统正用于微生物燃料电池中的可再生能源回收以及重金属和放射性核素的生物修复研究。嗜铁钩端螺旋菌纳米线表现出令人惊讶的非线性电传输行为,其中电导对电压的依赖性显示出峰值,表明存在具有更高电子态密度的离散能级。我们的结果表明,嗜铁钩端螺旋菌纳米线中的分子成分具有复杂的电子结构,该结构在介导电子传输中发挥作用。

相似文献

1
The molecular density of states in bacterial nanowires.
Biophys J. 2008 Jul;95(1):L10-2. doi: 10.1529/biophysj.108.134411. Epub 2008 Apr 25.
2
Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18127-31. doi: 10.1073/pnas.1004880107. Epub 2010 Oct 11.
3
Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
Appl Environ Microbiol. 2016 Aug 15;82(17):5428-43. doi: 10.1128/AEM.01615-16. Print 2016 Sep 1.
4
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63. doi: 10.1073/pnas.0604517103. Epub 2006 Jul 18.
5
Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12883-8. doi: 10.1073/pnas.1410551111. Epub 2014 Aug 20.
6
Ultrastructure of MR-1 nanowires revealed by electron cryotomography.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3246-E3255. doi: 10.1073/pnas.1718810115. Epub 2018 Mar 19.
7
Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior.
Nano Lett. 2013 Jun 12;13(6):2407-11. doi: 10.1021/nl400237p. Epub 2013 May 28.
8
Multistep hopping and extracellular charge transfer in microbial redox chains.
Phys Chem Chem Phys. 2012 Oct 28;14(40):13802-8. doi: 10.1039/c2cp41185g. Epub 2012 Jul 13.
9
Microbial nanowires - Electron transport and the role of synthetic analogues.
Acta Biomater. 2018 Mar 15;69:1-30. doi: 10.1016/j.actbio.2018.01.007. Epub 2018 Jan 31.
10
Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1.
J Bacteriol. 2005 Jul;187(14):5049-53. doi: 10.1128/JB.187.14.5049-5053.2005.

引用本文的文献

1
Electron transport across the cell envelope via multiheme -type cytochromes in .
Front Chem. 2025 Jul 16;13:1621274. doi: 10.3389/fchem.2025.1621274. eCollection 2025.
2
Impact of Native Environment in Multiheme-Cytochrome Chains of the MtrCAB Complex.
J Chem Inf Model. 2025 May 12;65(9):4568-4575. doi: 10.1021/acs.jcim.4c02382. Epub 2025 Apr 25.
4
Living electronics: A catalogue of engineered living electronic components.
Microb Biotechnol. 2023 Mar;16(3):507-533. doi: 10.1111/1751-7915.14171. Epub 2022 Dec 14.
5
Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology.
Int J Environ Res Public Health. 2020 Feb 10;17(3):1121. doi: 10.3390/ijerph17031121.
6
Terahertz-infrared spectroscopy of Shewanella oneidensis MR-1 extracellular matrix.
J Biol Phys. 2018 Sep;44(3):401-417. doi: 10.1007/s10867-018-9497-4. Epub 2018 May 7.
7
Ultrastructure of MR-1 nanowires revealed by electron cryotomography.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3246-E3255. doi: 10.1073/pnas.1718810115. Epub 2018 Mar 19.
8
Impedance spectroscopy of single bacterial nanofilament reveals water-mediated charge transfer.
PLoS One. 2018 Jan 19;13(1):e0191289. doi: 10.1371/journal.pone.0191289. eCollection 2018.
10
e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.
mBio. 2017 Jun 27;8(3):e00695-17. doi: 10.1128/mBio.00695-17.

本文引用的文献

1
TOWARDS A NEW BIOCHEMISTRY?
Science. 1941 Jun 27;93(2426):609-11. doi: 10.1126/science.93.2426.609.
2
Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants.
Appl Environ Microbiol. 2007 Nov;73(21):7003-12. doi: 10.1128/AEM.01087-07. Epub 2007 Jul 20.
3
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63. doi: 10.1073/pnas.0604517103. Epub 2006 Jul 18.
4
Extracellular electron transfer via microbial nanowires.
Nature. 2005 Jun 23;435(7045):1098-101. doi: 10.1038/nature03661.
5
Electron tunneling through proteins.
Q Rev Biophys. 2003 Aug;36(3):341-72. doi: 10.1017/s0033583503003913.
6
Breathing metals as a way of life: geobiology in action.
Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):215-22. doi: 10.1023/a:1020518818647.
7
A role for excreted quinones in extracellular electron transfer.
Nature. 2000 May 4;405(6782):94-7. doi: 10.1038/35011098.
8
Direct measurement of electrical transport through DNA molecules.
Nature. 2000 Feb 10;403(6770):635-8. doi: 10.1038/35001029.
9
Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy.
Phys Rev Lett. 1996 May 20;76(21):4066-4069. doi: 10.1103/PhysRevLett.76.4066.
10
Electronic structure of the Si(111)2 x 1 surface by scanning-tunneling microscopy.
Phys Rev Lett. 1986 Nov 17;57(20):2579-2582. doi: 10.1103/PhysRevLett.57.2579.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验