Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 5B9.
Nano Lett. 2013 Jun 12;13(6):2407-11. doi: 10.1021/nl400237p. Epub 2013 May 28.
The study of electrical transport in biomolecular materials is critical to our fundamental understanding of physiology and to the development of practical bioelectronics applications. In this study, we investigated the electronic transport characteristics of Shewanella oneidensis MR-1 nanowires by conducting-probe atomic force microscopy (CP-AFM) and by constructing field-effect transistors (FETs) based on individual S. oneidensis nanowires. Here we show that S. oneidensis nanowires exhibit p-type, tunable electronic behavior with a field-effect mobility on the order of 10(-1) cm(2)/(V s), comparable to devices based on synthetic organic semiconductors. This study opens up opportunities to use such bacterial nanowires as a new semiconducting biomaterial for making bioelectronics and to enhance the power output of microbial fuel cells through engineering the interfaces between metallic electrodes and bacterial nanowires.
生物分子材料中的电子输运研究对于我们深入理解生理学以及开发实用的生物电子学应用至关重要。在这项研究中,我们通过导电原子力显微镜(CP-AFM)和基于单个希瓦氏菌纳米线构建的场效应晶体管(FET)研究了希瓦氏菌属 MR-1 纳米线的电子输运特性。我们发现,希瓦氏菌属纳米线表现出 p 型、可调谐的电子行为,场效应迁移率约为 10(-1) cm(2)/(V s),可与基于合成有机半导体的器件相媲美。这项研究为利用此类细菌纳米线作为制造生物电子学的新型半导体生物材料开辟了机会,并通过工程化金属电极和细菌纳米线之间的界面,提高微生物燃料电池的功率输出。