Suppr超能文献

白蛋白、细胞色素 C 和希瓦氏菌 MR-1 细胞外基质中的介电普适性观察。

Observation of dielectric universalities in albumin, cytochrome C and Shewanella oneidensis MR-1 extracellular matrix.

机构信息

Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.

Institute of Physics AS CR, Praha 8, Czech Republic.

出版信息

Sci Rep. 2017 Nov 16;7(1):15731. doi: 10.1038/s41598-017-15693-y.

Abstract

The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ (ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ (ν)∝ν with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1-10 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.

摘要

金属的电动力学在德拜导电性模型中得到了很好的理解;绝缘体和半导体的性质由电子态的能隙决定。但是,有很多种类的无序材料不属于这两类,它们仍然以惊人的均匀方式对外场做出响应。在射频范围内,离域电荷产生与频率无关的电导率σ(ν),其大小随着冷却而呈指数下降。随着频率的增加,无弥散电导率开始呈现出由跳跃载流子引起的 s < 1 的幂律依赖性 σ(ν)∝ν。在低温下,这种通用介电响应可以跨越到另一个具有几乎恒定损耗 ε″∝σ/ν = const 的通用状态。基于这种普遍性的强大研究潜力在凝聚态物理中得到了广泛应用。在这里,我们研究了 Shewanella oneidensis MR-1 细胞外基质、细胞色素 C 和血清白蛋白的宽频带(1-10 Hz)介电响应。我们应用凝聚态物理的概念,在这些生物物体中识别出传输机制和许多能量、时间、频率、空间和温度尺度,这可以为我们深入了解蛋白质动力学提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6bd/5691187/f0c6a1061040/41598_2017_15693_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验