Suppr超能文献

严重急性呼吸综合征冠状病毒(SARS-CoV)的融合核心结构:寻找有效的SARS-CoV进入抑制剂。

Fusion core structure of the severe acute respiratory syndrome coronavirus (SARS-CoV): in search of potent SARS-CoV entry inhibitors.

作者信息

Chu Ling-Hon Matthew, Chan Siu-Hong, Tsai Sau-Na, Wang Yi, Cheng Christopher Hon-Ki, Wong Kam-Bo, Waye Mary Miu-Yee, Ngai Sai-Ming

机构信息

Molecular Biotechnology Program, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

J Cell Biochem. 2008 Aug 15;104(6):2335-47. doi: 10.1002/jcb.21790.

Abstract

Severe acute respiratory coronavirus (SARS-CoV) spike (S) glycoprotein fusion core consists of a six-helix bundle with the three C-terminal heptad repeat (HR2) helices packed against a central coiled-coil of the other three N-terminal heptad repeat (HR1) helices. Each of the three peripheral HR2 helices shows prominent contacts with the hydrophobic surface of the central HR1 coiled-coil. The concerted protein-protein interactions among the HR helices are responsible for the fusion event that leads to the release of the SARS-CoV nucleocapsid into the target host-cell. In this investigation, we applied recombinant protein and synthetic peptide-based biophysical assays to characterize the biological activities of the HR helices. In a parallel experiment, we employed a HIV-luc/SARS pseudotyped virus entry inhibition assay to screen for potent inhibitory activities on HR peptides derived from the SARS-CoV S protein HR regions and a series of other small-molecule drugs. Three HR peptides and five small-molecule drugs were identified as potential inhibitors. ADS-J1, which has been used to interfere with the fusogenesis of HIV-1 onto CD4+ cells, demonstrated the highest HIV-luc/SARS pseudotyped virus-entry inhibition activity among the other small-molecule drugs. Molecular modeling analysis suggested that ADS-J1 may bind to the deep pocket of the hydrophobic groove on the surface of the central coiled-coil of SARS-CoV S HR protein and prevent the entrance of the SARS-CoV into the host cells.

摘要

严重急性呼吸综合征冠状病毒(SARS-CoV)刺突(S)糖蛋白融合核心由一个六螺旋束组成,其中三个C末端七肽重复序列(HR2)螺旋与另外三个N末端七肽重复序列(HR1)螺旋的中央卷曲螺旋紧密堆积。三个外围的HR2螺旋中的每一个都与中央HR1卷曲螺旋的疏水表面有显著接触。HR螺旋之间协同的蛋白质-蛋白质相互作用导致了融合事件,进而使SARS-CoV核衣壳释放到靶宿主细胞中。在本研究中,我们应用重组蛋白和基于合成肽的生物物理分析方法来表征HR螺旋的生物学活性。在一项平行实验中,我们采用HIV-luc/SARS假型病毒进入抑制试验,以筛选对源自SARS-CoV S蛋白HR区域的HR肽以及一系列其他小分子药物的有效抑制活性。鉴定出三种HR肽和五种小分子药物为潜在抑制剂。已用于干扰HIV-1与CD4+细胞融合的ADS-J1在其他小分子药物中表现出最高的HIV-luc/SARS假型病毒进入抑制活性。分子模拟分析表明,ADS-J1可能与SARS-CoV S HR蛋白中央卷曲螺旋表面疏水凹槽的深口袋结合,从而阻止SARS-CoV进入宿主细胞。

相似文献

4
Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein.
Biochem Biophys Res Commun. 2004 Jul 2;319(3):746-52. doi: 10.1016/j.bbrc.2004.05.046.
5
Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core.
J Biol Chem. 2004 Nov 19;279(47):49414-9. doi: 10.1074/jbc.M408782200. Epub 2004 Sep 1.
6
Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides.
Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60. doi: 10.1073/pnas.0400576101. Epub 2004 May 18.
7
Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein.
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63. doi: 10.1073/pnas.0406128102. Epub 2004 Dec 16.
8
Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus.
Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8709-14. doi: 10.1073/pnas.0402753101. Epub 2004 May 25.

引用本文的文献

2
Structure and Function of the SARS-CoV-2 6-HB Fusion Core and Peptide-Based Fusion Inhibitors: A Review.
Curr Med Chem. 2023 Nov 24. doi: 10.2174/0109298673265694231113061842.
3
Peptide-based inhibitors hold great promise as the broad-spectrum agents against coronavirus.
Front Microbiol. 2023 Jan 19;13:1093646. doi: 10.3389/fmicb.2022.1093646. eCollection 2022.
4
Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process.
Int J Mol Sci. 2022 Sep 3;23(17):10067. doi: 10.3390/ijms231710067.
5
Potential of antiviral peptide-based SARS-CoV-2 inactivators to combat COVID-19.
PLoS One. 2022 Jun 3;17(6):e0268919. doi: 10.1371/journal.pone.0268919. eCollection 2022.
6
Peptide-Based Dual HIV and Coronavirus Entry Inhibitors.
Adv Exp Med Biol. 2022;1366:87-100. doi: 10.1007/978-981-16-8702-0_6.
7
Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV.
Adv Ther (Weinh). 2021 Oct;4(10):2100104. doi: 10.1002/adtp.202100104. Epub 2021 Aug 6.
8
Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19.
J Infect Public Health. 2021 Aug;14(8):1106-1119. doi: 10.1016/j.jiph.2021.06.017. Epub 2021 Jul 3.
9
Discovery of New Potent anti-MERS CoV Fusion Inhibitors.
Front Pharmacol. 2021 Jun 2;12:685161. doi: 10.3389/fphar.2021.685161. eCollection 2021.
10
Antiviral peptides against Coronaviridae family: A review.
Peptides. 2021 May;139:170526. doi: 10.1016/j.peptides.2021.170526. Epub 2021 Mar 4.

本文引用的文献

1
4
Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein.
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63. doi: 10.1073/pnas.0406128102. Epub 2004 Dec 16.
6
Cellular entry of the SARS coronavirus.
Trends Microbiol. 2004 Oct;12(10):466-72. doi: 10.1016/j.tim.2004.08.008.
7
Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression.
Biochem Biophys Res Commun. 2004 Sep 3;321(4):994-1000. doi: 10.1016/j.bbrc.2004.07.060.
8
Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core.
J Biol Chem. 2004 Nov 19;279(47):49414-9. doi: 10.1074/jbc.M408782200. Epub 2004 Sep 1.
10
Phylogenomics and bioinformatics of SARS-CoV.
Trends Microbiol. 2004 Mar;12(3):106-11. doi: 10.1016/j.tim.2004.01.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验