Barroso da Silva Fernando Luís, Paco Karen, Laaksonen Aatto, Ray Animesh
Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Prof Zeferino Vaz, S/no, Ribeirão Preto, São Paulo BR-14040-903 Brazil.
Department of Chemical and Biomolecular Engineering, NC State University, 911 Partners Way, Engineering Building I (EB1), Raleigh, NC 27695-7905 USA.
Biophys Rev. 2025 Mar 8;17(2):309-333. doi: 10.1007/s12551-025-01276-z. eCollection 2025 Apr.
The spike protein encoded by the SARS-CoV-2 has become one of the most studied macromolecules in recent years due to its central role in COVID-19 pathogenesis. The spike protein's receptor-binding domain (RBD) directly interacts with the host-encoded receptor protein, ACE2. This review critically examines computational insights into RBD's interaction with ACE2 and with therapeutic antibodies designed to interfere with this interaction. We begin by summarizing insights from early computational studies on pre-pandemic SARS-CoV-1 RBD interactions and how these early studies shaped the understanding of SARS-CoV-2. Next, we highlight key theoretical contributions that revealed the molecular mechanisms behind the binding affinity of SARS-CoV-2 RBD against ACE2, and the structural changes that have enhanced the infectivity of emerging variants. Special attention is given to the "RBD charge rule", a predictive framework for determining variant infectivity based on the electrostatic properties of the RBD. Towards applying the computational insights to therapy, we discuss a multiscale computational protocol for optimizing monoclonal antibodies to improve binding affinity across multiple spike protein variants, including representatives from the Omicron family. Finally, we explore how these insights can inform the development of future vaccines and therapeutic interventions for combating future coronavirus diseases.
由于其在新冠病毒疾病(COVID-19)发病机制中的核心作用,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)编码的刺突蛋白已成为近年来研究最多的大分子之一。刺突蛋白的受体结合域(RBD)直接与宿主编码的受体蛋白血管紧张素转换酶2(ACE2)相互作用。本综述批判性地审视了关于RBD与ACE2相互作用以及与旨在干扰这种相互作用的治疗性抗体相互作用的计算见解。我们首先总结了大流行前关于严重急性呼吸综合征冠状病毒1(SARS-CoV-1)RBD相互作用的早期计算研究的见解,以及这些早期研究如何塑造了对SARS-CoV-2的理解。接下来,我们强调了关键的理论贡献,这些贡献揭示了SARS-CoV-2 RBD对ACE2结合亲和力背后的分子机制,以及增强新兴变体传染性的结构变化。特别关注“RBD电荷规则”,这是一个基于RBD的静电特性确定变体传染性的预测框架。为了将计算见解应用于治疗,我们讨论了一种多尺度计算方案,用于优化单克隆抗体,以提高其对多种刺突蛋白变体(包括来自奥密克戎家族的代表)的结合亲和力。最后,我们探讨这些见解如何为未来抗击冠状病毒疾病的疫苗和治疗干预措施的开发提供信息。