Munns Rana, Tester Mark
CSIRO Plant Industry, Canberra, ACT, Australia.
Annu Rev Plant Biol. 2008;59:651-81. doi: 10.1146/annurev.arplant.59.032607.092911.
The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
本文在细胞、器官和整株植物水平上综述了植物对盐分胁迫的渗透和离子成分耐受性的生理及分子机制。植物生长对盐分的响应分为两个阶段:一个快速的渗透阶段,抑制幼叶生长;一个较慢的离子阶段,加速成熟叶片衰老。植物对盐分的适应有三种不同类型:渗透胁迫耐受性、Na⁺或Cl⁻排斥以及组织对积累的Na⁺或Cl⁻的耐受性。我们对HKT基因家族在叶片Na⁺排斥中的作用的理解正在增加,对细胞水平上许多其他运输过程的分子基础的理解也是如此。然而,我们对整株植物水平上Na⁺积累的总体控制和渗透胁迫耐受性的分子理解有限。分子遗传学和功能基因组学提供了一个新机会,将分子和生理知识整合起来,以提高与粮食生产和环境可持续性相关的植物的耐盐性。