Suppr超能文献

用于治疗老年抑郁症的经验性决策树。

Empirically derived decision trees for the treatment of late-life depression.

作者信息

Andreescu Carmen, Mulsant Benoit H, Houck Patricia R, Whyte Ellen M, Mazumdar Sati, Dombrovski Alexandre Y, Pollock Bruce G, Reynolds Charles F

机构信息

Advanced Center in Intervention and Services Research for Late-Life Mood Disorders, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.

出版信息

Am J Psychiatry. 2008 Jul;165(7):855-62. doi: 10.1176/appi.ajp.2008.07081340. Epub 2008 May 1.

Abstract

OBJECTIVE

Several predictors of treatment response in late-life depression have been reported in the literature. The aim of this analysis was to develop a clinically useful algorithm that would allow clinicians to predict which patients will likely respond to treatment and thereby guide clinical decision making.

METHOD

A total of 461 patients with late-life depression were treated under structured conditions for up to 12 weeks and assessed weekly with the 17-item Hamilton Rating Scale for Depression (HAM-D-17). The authors developed a hierarchy of predictors of treatment response using signal-detection theory. The authors developed two models, one minimizing false predictions of future response and one minimizing false predictions of future nonresponse, to offer clinicians two clinically useful treatment algorithms.

RESULTS

In the first model, early symptom improvement (defined by the relative change in HAM-D-17 total score from baseline to week 4), lower baseline anxiety, and an older age of onset predict response at 12 weeks. In the second model, early symptom improvement represents the principal guide in tailoring treatment, followed by baseline anxiety level, baseline sleep disturbance, and--for a minority of patients--the adequacy of previous antidepressant treatment.

CONCLUSIONS

Our two models, developed to help clinicians in different clinical circumstances, illustrate the possibility of tailoring the treatment of late-life depression based on clinical characteristics and confirm the importance of early observed changes in clinical status.

摘要

目的

文献中已报道了老年抑郁症治疗反应的几种预测因素。本分析的目的是开发一种临床实用算法,使临床医生能够预测哪些患者可能对治疗有反应,从而指导临床决策。

方法

总共461例老年抑郁症患者在结构化条件下接受了长达12周的治疗,并每周用17项汉密尔顿抑郁评定量表(HAM-D-17)进行评估。作者运用信号检测理论开发了治疗反应预测因素的层次结构。作者开发了两个模型,一个使对未来反应的错误预测最小化,另一个使对未来无反应的错误预测最小化,以向临床医生提供两种临床实用的治疗算法。

结果

在第一个模型中,早期症状改善(由HAM-D-17总分从基线到第4周的相对变化定义)、较低的基线焦虑水平和较晚的发病年龄可预测12周时的反应。在第二个模型中,早期症状改善是调整治疗的主要指导因素,其次是基线焦虑水平、基线睡眠障碍,以及(对于少数患者)既往抗抑郁治疗的充分性。

结论

我们开发的这两个模型旨在帮助处于不同临床情况的临床医生,说明了根据临床特征调整老年抑郁症治疗的可能性,并证实了早期观察到的临床状态变化的重要性。

相似文献

1
Empirically derived decision trees for the treatment of late-life depression.用于治疗老年抑郁症的经验性决策树。
Am J Psychiatry. 2008 Jul;165(7):855-62. doi: 10.1176/appi.ajp.2008.07081340. Epub 2008 May 1.
7
Testosterone therapy in late-life major depression in males.男性晚年重度抑郁症的睾酮治疗
J Clin Psychiatry. 2002 Dec;63(12):1096-101. doi: 10.4088/jcp.v63n1202.

引用本文的文献

9
Advances in Pharmacotherapy of Late-Life Depression.老年期抑郁症的药物治疗进展。
Curr Psychiatry Rep. 2018 Apr 7;20(5):34. doi: 10.1007/s11920-018-0899-6.

本文引用的文献

2
Biomarkers in geriatric psychiatry.老年精神病学中的生物标志物。
Am J Geriatr Psychiatry. 2007 Oct;15(10):827-31. doi: 10.1097/JGP.0b013e318150df08.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验