Lin Eugene, Kuo Po-Hsiu, Liu Yu-Li, Yu Younger W-Y, Yang Albert C, Tsai Shih-Jen
Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA.
Pharmaceuticals (Basel). 2020 Oct 13;13(10):305. doi: 10.3390/ph13100305.
In the wake of recent advances in machine learning research, the study of pharmacogenomics using predictive algorithms serves as a new paradigmatic application. In this work, our goal was to explore an ensemble machine learning approach which aims to predict probable antidepressant treatment response and remission in major depressive disorder (MDD). To discover the status of antidepressant treatments, we established an ensemble predictive model with a feature selection algorithm resulting from the analysis of genetic variants and clinical variables of 421 patients who were treated with selective serotonin reuptake inhibitors. We also compared our ensemble machine learning framework with other state-of-the-art models including multi-layer feedforward neural networks (MFNNs), logistic regression, support vector machine, C4.5 decision tree, naïve Bayes, and random forests. Our data revealed that the ensemble predictive algorithm with feature selection (using fewer biomarkers) performed comparably to other predictive algorithms (such as MFNNs and logistic regression) to derive the perplexing relationship between biomarkers and the status of antidepressant treatments. Our study demonstrates that the ensemble machine learning framework may present a useful technique to create bioinformatics tools for discriminating non-responders from responders prior to antidepressant treatments.
随着机器学习研究的最新进展,使用预测算法进行药物基因组学研究成为一种新的范式应用。在这项工作中,我们的目标是探索一种集成机器学习方法,旨在预测重度抑郁症(MDD)患者可能的抗抑郁治疗反应和缓解情况。为了了解抗抑郁治疗的状况,我们通过对421例接受选择性5-羟色胺再摄取抑制剂治疗患者的基因变异和临床变量进行分析,建立了一种带有特征选择算法的集成预测模型。我们还将我们的集成机器学习框架与其他先进模型进行了比较,包括多层前馈神经网络(MFNN)、逻辑回归、支持向量机、C4.5决策树、朴素贝叶斯和随机森林。我们的数据显示,带有特征选择(使用较少生物标志物)的集成预测算法在得出生物标志物与抗抑郁治疗状况之间复杂关系方面,与其他预测算法(如MFNN和逻辑回归)表现相当。我们的研究表明,集成机器学习框架可能是一种有用的技术,可用于创建生物信息学工具,在抗抑郁治疗前区分无反应者和有反应者。