Ueda Minoru, Nishikawa Tomotaro, Fujimoto Masaru, Takanashi Hideki, Arimura Shin-Ichi, Tsutsumi Nobuhiro, Kadowaki Koh-Ichi
Genetic Diversity Department, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan.
Mol Biol Evol. 2008 Aug;25(8):1566-75. doi: 10.1093/molbev/msn102. Epub 2008 May 2.
Organelle (mitochondria and chloroplasts in plants) genomes lost a large number of genes after endosymbiosis occurred. Even after this major gene loss, organelle genomes still lose their own genes, even those that are essential, via gene transfer to the nucleus and gene substitution of either different organelle origin or de novo genes. Gene transfer and substitution events are important processes in the evolution of the eukaryotic cell. Gene loss is an ongoing process in the mitochondria and chloroplasts of higher plants. The gene for ribosomal protein S16 (rps16) is encoded in the chloroplast genome of most higher plants but not in Medicago truncatula and Populus alba. Here, we show that these 2 species have compensated for loss of the rps16 from the chloroplast genome by having a mitochondrial rps16 that can target the chloroplasts as well as mitochondria. Furthermore, in Arabidopsis thaliana, Lycopersicon esculentum, and Oryza sativa, whose chloroplast genomes encode the rps16, we show that the product of the mitochondrial rps16 has dual targeting ability. These results suggest that the dual targeting of RPS16 to the mitochondria and chloroplasts emerged before the divergence of monocots and dicots (140-150 MYA). The gene substitution of the chloroplast rps16 by the nuclear-encoded rps16 in higher plants is the first report about ongoing gene substitution by dual targeting and provides evidence for an intermediate stage in the formation of this heterogeneous organelle.
内共生发生后,细胞器(植物中的线粒体和叶绿体)基因组丢失了大量基因。即使在这次主要的基因丢失之后,细胞器基因组仍会通过基因转移到细胞核以及不同细胞器起源或从头基因的基因替代,丢失自身的基因,甚至是那些必需的基因。基因转移和替代事件是真核细胞进化中的重要过程。基因丢失在高等植物的线粒体和叶绿体中是一个持续的过程。核糖体蛋白S16(rps16)基因在大多数高等植物的叶绿体基因组中编码,但在蒺藜苜蓿和银白杨中不编码。在这里,我们表明这两个物种通过拥有一种可以靶向叶绿体以及线粒体的线粒体rps16,补偿了叶绿体基因组中rps16的丢失。此外,在叶绿体基因组编码rps16的拟南芥、番茄和水稻中,我们表明线粒体rps16的产物具有双重靶向能力。这些结果表明,RPS16对线粒体和叶绿体的双重靶向出现在单子叶植物和双子叶植物分化之前(1.4 - 1.5亿年前)。高等植物中由核编码的rps16对叶绿体rps16进行基因替代,是关于通过双重靶向进行持续基因替代的首次报道,并为这种异质细胞器形成的中间阶段提供了证据。