Suppr超能文献

钾离子通道亚基KCNQ1和KCNE1参与非洲爪蟾胚胎早期左右模式形成。

KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos.

作者信息

Morokuma Junji, Blackiston Douglas, Levin Michael

机构信息

Center for Regenerative and Developmental Biology, Forsyth Institute, Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.

出版信息

Cell Physiol Biochem. 2008;21(5-6):357-72. doi: 10.1159/000129628. Epub 2008 Apr 24.

Abstract

Several ion transporters have been implicated in left-right (LR) patterning. Here, we characterize a new component of the early bioelectrical circuit: the potassium channel KCNQ1 and its accessory subunit KCNE1. Having cloned the native Xenopus versions of both genes, we show that both are asymmetrically localized as maternal proteins during the first few cleavages of frog embryo development in a process dependent on microtubule and actin organization. Molecular loss-of-function using dominant negative constructs demonstrates that both gene products are required for normal LR asymmetry. We propose a model whereby these channels provide an exit path for K(+) ions brought in by the H(+),K(+)-ATPase. This physiological module thus allows the obligate but electroneutral H(+),K(+)-ATPase to generate an asymmetric voltage gradient on the left and right sides. Our data reveal a new, bioelectrical component of the mechanisms patterning a large-scale axis in vertebrate embryogenesis.

摘要

几种离子转运蛋白与左右(LR)模式形成有关。在此,我们鉴定了早期生物电回路的一个新组分:钾通道KCNQ1及其辅助亚基KCNE1。在克隆了非洲爪蟾这两个基因的天然版本后,我们发现,在青蛙胚胎发育的最初几次卵裂过程中,二者作为母体蛋白不对称定位,这一过程依赖于微管和肌动蛋白的组织。使用显性负性构建体进行分子功能缺失实验表明,这两个基因产物对于正常的LR不对称都是必需的。我们提出了一个模型,即这些通道为H⁺,K⁺ - ATP酶带入的K⁺离子提供了一条出口路径。因此,这个生理模块允许专性但电中性的H⁺,K⁺ - ATP酶在左右两侧产生不对称的电压梯度。我们的数据揭示了脊椎动物胚胎发生过程中大规模轴模式形成机制的一个新的生物电组分。

相似文献

1
KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos.
Cell Physiol Biochem. 2008;21(5-6):357-72. doi: 10.1159/000129628. Epub 2008 Apr 24.
3
KCNQ1/KCNE1 assembly, co-translation not required.
Channels (Austin). 2010 Mar-Apr;4(2):108-14. doi: 10.4161/chan.4.2.11141. Epub 2010 Mar 6.
4
Rab GTPases are required for early orientation of the left-right axis in Xenopus.
Mech Dev. 2013 Apr-May;130(4-5):254-71. doi: 10.1016/j.mod.2012.11.007. Epub 2013 Jan 23.
5
Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit.
Eur J Pharmacol. 2010 Jul 10;637(1-3):138-47. doi: 10.1016/j.ejphar.2010.04.001. Epub 2010 Apr 21.
6
Stoichiometry of the KCNQ1 - KCNE1 ion channel complex.
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18862-7. doi: 10.1073/pnas.1010354107. Epub 2010 Oct 20.
7
KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7367-E7376. doi: 10.1073/pnas.1710335114. Epub 2017 Aug 14.
8
The KCNE1 beta-subunit exerts a transient effect on the KCNQ1 K+ channel.
Biochem Biophys Res Commun. 2007 Nov 9;363(1):133-9. doi: 10.1016/j.bbrc.2007.08.146. Epub 2007 Aug 31.
9
Molecular cloning and functional expression of the K channel K7.1 and the regulatory subunit KCNE1 from equine myocardium.
Res Vet Sci. 2017 Aug;113:79-86. doi: 10.1016/j.rvsc.2017.09.010. Epub 2017 Sep 11.
10

引用本文的文献

2
Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain.
iScience. 2023 Nov 4;26(12):108398. doi: 10.1016/j.isci.2023.108398. eCollection 2023 Dec 15.
3
Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR.
Nat Commun. 2022 Nov 5;13(1):6681. doi: 10.1038/s41467-022-34363-w.
7
Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form.
Dev Neurobiol. 2017 May;77(5):643-673. doi: 10.1002/dneu.22405. Epub 2016 Jun 24.
9
Biofield Physiology: A Framework for an Emerging Discipline.
Glob Adv Health Med. 2015 Nov;4(Suppl):35-41. doi: 10.7453/gahmj.2015.015.suppl. Epub 2015 Nov 1.

本文引用的文献

3
Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability.
J Biol Chem. 2007 Nov 30;282(48):34801-8. doi: 10.1074/jbc.M704522200. Epub 2007 Oct 4.
4
Functional significance of channels and transporters expressed in the inner ear and kidney.
Am J Physiol Cell Physiol. 2007 Oct;293(4):C1187-208. doi: 10.1152/ajpcell.00024.2007. Epub 2007 Aug 1.
5
Strategies to establish left/right asymmetry in vertebrates and invertebrates.
Curr Opin Genet Dev. 2007 Aug;17(4):351-8. doi: 10.1016/j.gde.2007.05.008. Epub 2007 Jul 23.
6
Genetic control of heart function and aging in Drosophila.
Trends Cardiovasc Med. 2007 Jul;17(5):177-82. doi: 10.1016/j.tcm.2007.04.001.
8
Large-scale biophysics: ion flows and regeneration.
Trends Cell Biol. 2007 Jun;17(6):261-70. doi: 10.1016/j.tcb.2007.04.007. Epub 2007 May 10.
9
KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes.
Biochim Biophys Acta. 2007 Jun;1773(6):764-73. doi: 10.1016/j.bbamcr.2007.02.008. Epub 2007 Mar 14.
10
KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging.
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3943-8. doi: 10.1073/pnas.0609278104. Epub 2007 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验