Suppr超能文献

模式调控中的间隙连接信号传导:生理网络连通性指导生长和形态。

Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form.

作者信息

Mathews Juanita, Levin Michael

机构信息

Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA.

出版信息

Dev Neurobiol. 2017 May;77(5):643-673. doi: 10.1002/dneu.22405. Epub 2016 Jun 24.

Abstract

Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.

摘要

间隙连接(GJs)是一种水性通道,可使细胞通过生理信号直接进行通讯。间隙连接连通性在决定单细胞功能方面的作用早已得到认可。然而,间隙连接还有另一个重要作用:调节大规模解剖模式。间隙连接不仅是多功能的计算元件,使细胞能够控制它们接收和发出的小分子信号,还能在大量细胞群体中建立连通模式。通过动态调节体内生物电网络的拓扑结构,间隙连接是许多组织实现复杂形态发生能力的基础。在此,本文报道了关于间隙连接在斑马鱼鳍生长、左右模式建立、称为癌症的发育失调以及涡虫再生中大规模头尾极性和头部形状控制等方面模式形成作用的最新数据综述。本文提出了一种观点,即间隙连接不仅是在单细胞中发挥作用的分子特征,还能在非神经体细胞组织中实现类似全局神经的动态变化。这种观点表明了一个丰富的未来工作计划,该计划利用间隙连接生物物理学的快速进展,开发间隙连接介导的全局动态变化,以应用于出生缺陷、再生医学和形态发生生物工程。© 2016威利期刊公司。《发育神经生物学》77: 643 - 673, 2017。

相似文献

1
Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form.
Dev Neurobiol. 2017 May;77(5):643-673. doi: 10.1002/dneu.22405. Epub 2016 Jun 24.
2
Morphology changes induced by intercellular gap junction blocking: A reaction-diffusion mechanism.
Biosystems. 2021 Nov;209:104511. doi: 10.1016/j.biosystems.2021.104511. Epub 2021 Aug 17.
3
Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form.
Annu Rev Biomed Eng. 2017 Jun 21;19:353-387. doi: 10.1146/annurev-bioeng-071114-040647.
4
The contribution of electrical synapses to field potential oscillations in the hippocampal formation.
Front Neural Circuits. 2014 Apr 3;8:32. doi: 10.3389/fncir.2014.00032. eCollection 2014.
6
Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions.
Bioelectrochemistry. 2020 Apr;132:107410. doi: 10.1016/j.bioelechem.2019.107410. Epub 2019 Nov 29.
7
Gap junctions in Turing-type periodic feather pattern formation.
PLoS Biol. 2024 May 14;22(5):e3002636. doi: 10.1371/journal.pbio.3002636. eCollection 2024 May.
8
Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration.
J Physiol. 2014 Jun 1;592(11):2295-305. doi: 10.1113/jphysiol.2014.271940.
10
Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions.
J Physiol. 2003 Dec 15;553(Pt 3):729-45. doi: 10.1113/jphysiol.2003.053439. Epub 2003 Sep 26.

引用本文的文献

2
Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration.
Biomaterials. 2025 Nov;322:123385. doi: 10.1016/j.biomaterials.2025.123385. Epub 2025 May 2.
3
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70003. doi: 10.1002/wnan.70003.
4
A microfluidic sucrose gap platform using trilaminar flow with on-chip switching and novel calibration: Challenges and limitations.
Biomicrofluidics. 2025 Feb 10;19(1):014102. doi: 10.1063/5.0246160. eCollection 2025 Jan.
7
Formation of recurring transient Ca-based intercellular communities during hematopoiesis.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2318155121. doi: 10.1073/pnas.2318155121. Epub 2024 Apr 11.
8
Bioelectricity in dental medicine: a narrative review.
Biomed Eng Online. 2024 Jan 3;23(1):3. doi: 10.1186/s12938-023-01189-6.
9
Future medicine: from molecular pathways to the collective intelligence of the body.
Trends Mol Med. 2023 Sep;29(9):687-710. doi: 10.1016/j.molmed.2023.06.007. Epub 2023 Jul 20.
10

本文引用的文献

1
Physiological inputs regulate species-specific anatomy during embryogenesis and regeneration.
Commun Integr Biol. 2016 Jul 15;9(4):e1192733. doi: 10.1080/19420889.2016.1192733. eCollection 2016 Jul-Aug.
3
Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer.
Nature. 2016 May 26;533(7604):493-498. doi: 10.1038/nature18268. Epub 2016 May 18.
4
Connexins, Pannexins, and Their Channels in Fibroproliferative Diseases.
J Membr Biol. 2016 Jun;249(3):199-213. doi: 10.1007/s00232-016-9881-6. Epub 2016 Feb 25.
6
Connexins in skeletal muscle development and disease.
Semin Cell Dev Biol. 2016 Feb;50:67-73. doi: 10.1016/j.semcdb.2015.12.001. Epub 2015 Dec 10.
10
Ion channels in development and cancer.
Annu Rev Cell Dev Biol. 2015;31:231-47. doi: 10.1146/annurev-cellbio-100814-125338.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验