Bébarová Markéta, O'Hara Tom, Geelen Jan L M C, Jongbloed Roselie J, Timmermans Carl, Arens Yvonne H, Rodriguez Luz-Maria, Rudy Yoram, Volders Paul G A
Dept. of Cardiology, Cardiovascular Research Institute Maastricht, Academic Hospital Maastricht, 6202 AZ, Maastricht, The Netherlands.
Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H48-58. doi: 10.1152/ajpheart.91495.2007. Epub 2008 May 2.
Two mechanisms are generally proposed to explain right precordial ST-segment elevation in Brugada syndrome: 1) right ventricular (RV) subepicardial action potential shortening and/or loss of dome causing transmural dispersion of repolarization; and 2) RV conduction delay. Here we report novel mechanistic insights into ST-segment elevation associated with a Na(+) current (I(Na)) loss-of-function mutation from studies in a Dutch kindred with the COOH-terminal SCN5A variant p.Phe2004Leu. The proband, a man, experienced syncope at age 22 yr and had coved-type ST-segment elevations in ECG leads V1 and V2 and negative T waves in V2. Peak and persistent mutant I(Na) were significantly decreased. I(Na) closed-state inactivation was increased, slow inactivation accelerated, and recovery from inactivation delayed. Computer-simulated I(Na)-dependent excitation was decremental from endo- to epicardium at cycle length 1,000 ms, not at cycle length 300 ms. Propagation was discontinuous across the midmyocardial to epicardial transition region, exhibiting a long local delay due to phase 0 block. Beyond this region, axial excitatory current was provided by phase 2 (dome) of the M-cell action potentials and depended on L-type Ca(2+) current ("phase 2 conduction"). These results explain right precordial ST-segment elevation on the basis of RV transmural gradients of membrane potentials during early repolarization caused by discontinuous conduction. The late slow-upstroke action potentials at the subepicardium produce T-wave inversion in the computed ECG waveform, in line with the clinical ECG.
一般提出两种机制来解释Brugada综合征患者右胸前导联ST段抬高:1)右心室(RV)心外膜下动作电位缩短和/或圆顶消失导致复极跨壁离散;2)RV传导延迟。在此,我们通过对一个携带COOH末端SCN5A变体p.Phe2004Leu的荷兰家族的研究,报告了与Na⁺电流(Iₙₐ)功能丧失突变相关的ST段抬高的新机制见解。先证者为一名男性,22岁时发生晕厥,心电图V1和V2导联出现穹窿型ST段抬高,V2导联T波倒置。峰值和持续性突变Iₙₐ显著降低。Iₙₐ的关闭状态失活增加,缓慢失活加速,失活恢复延迟。在1000 ms的心动周期长度下,计算机模拟的Iₙₐ依赖性兴奋从内膜到外膜呈递减,而在300 ms的心动周期长度下则不然。兴奋在心肌中层到心外膜过渡区域传导不连续,由于0期阻滞而表现出较长的局部延迟。在该区域之外,轴向兴奋电流由M细胞动作电位的2期(圆顶)提供,并依赖于L型Ca²⁺电流(“2期传导”)。这些结果基于早期复极期间由不连续传导引起的RV跨壁膜电位梯度解释了右胸前导联ST段抬高。心外膜下的晚期缓慢上升动作电位在计算的心电图波形中产生T波倒置,与临床心电图一致。