Suppr超能文献

心外膜下0期阻滞和跨壁传导中断是由SCN5A功能丧失突变导致右心前区ST段抬高的原因。

Subepicardial phase 0 block and discontinuous transmural conduction underlie right precordial ST-segment elevation by a SCN5A loss-of-function mutation.

作者信息

Bébarová Markéta, O'Hara Tom, Geelen Jan L M C, Jongbloed Roselie J, Timmermans Carl, Arens Yvonne H, Rodriguez Luz-Maria, Rudy Yoram, Volders Paul G A

机构信息

Dept. of Cardiology, Cardiovascular Research Institute Maastricht, Academic Hospital Maastricht, 6202 AZ, Maastricht, The Netherlands.

出版信息

Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H48-58. doi: 10.1152/ajpheart.91495.2007. Epub 2008 May 2.

Abstract

Two mechanisms are generally proposed to explain right precordial ST-segment elevation in Brugada syndrome: 1) right ventricular (RV) subepicardial action potential shortening and/or loss of dome causing transmural dispersion of repolarization; and 2) RV conduction delay. Here we report novel mechanistic insights into ST-segment elevation associated with a Na(+) current (I(Na)) loss-of-function mutation from studies in a Dutch kindred with the COOH-terminal SCN5A variant p.Phe2004Leu. The proband, a man, experienced syncope at age 22 yr and had coved-type ST-segment elevations in ECG leads V1 and V2 and negative T waves in V2. Peak and persistent mutant I(Na) were significantly decreased. I(Na) closed-state inactivation was increased, slow inactivation accelerated, and recovery from inactivation delayed. Computer-simulated I(Na)-dependent excitation was decremental from endo- to epicardium at cycle length 1,000 ms, not at cycle length 300 ms. Propagation was discontinuous across the midmyocardial to epicardial transition region, exhibiting a long local delay due to phase 0 block. Beyond this region, axial excitatory current was provided by phase 2 (dome) of the M-cell action potentials and depended on L-type Ca(2+) current ("phase 2 conduction"). These results explain right precordial ST-segment elevation on the basis of RV transmural gradients of membrane potentials during early repolarization caused by discontinuous conduction. The late slow-upstroke action potentials at the subepicardium produce T-wave inversion in the computed ECG waveform, in line with the clinical ECG.

摘要

一般提出两种机制来解释Brugada综合征患者右胸前导联ST段抬高:1)右心室(RV)心外膜下动作电位缩短和/或圆顶消失导致复极跨壁离散;2)RV传导延迟。在此,我们通过对一个携带COOH末端SCN5A变体p.Phe2004Leu的荷兰家族的研究,报告了与Na⁺电流(Iₙₐ)功能丧失突变相关的ST段抬高的新机制见解。先证者为一名男性,22岁时发生晕厥,心电图V1和V2导联出现穹窿型ST段抬高,V2导联T波倒置。峰值和持续性突变Iₙₐ显著降低。Iₙₐ的关闭状态失活增加,缓慢失活加速,失活恢复延迟。在1000 ms的心动周期长度下,计算机模拟的Iₙₐ依赖性兴奋从内膜到外膜呈递减,而在300 ms的心动周期长度下则不然。兴奋在心肌中层到心外膜过渡区域传导不连续,由于0期阻滞而表现出较长的局部延迟。在该区域之外,轴向兴奋电流由M细胞动作电位的2期(圆顶)提供,并依赖于L型Ca²⁺电流(“2期传导”)。这些结果基于早期复极期间由不连续传导引起的RV跨壁膜电位梯度解释了右胸前导联ST段抬高。心外膜下的晚期缓慢上升动作电位在计算的心电图波形中产生T波倒置,与临床心电图一致。

相似文献

1
Subepicardial phase 0 block and discontinuous transmural conduction underlie right precordial ST-segment elevation by a SCN5A loss-of-function mutation.
Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H48-58. doi: 10.1152/ajpheart.91495.2007. Epub 2008 May 2.
2
The complexity of genotype-phenotype relations associated with loss-of-function sodium channel mutations and the role of in silico studies.
Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H8-9. doi: 10.1152/ajpheart.00494.2008. Epub 2008 May 23.
4
Characterization and mechanisms of action of novel NaV1.5 channel mutations associated with Brugada syndrome.
Circ Arrhythm Electrophysiol. 2013 Feb;6(1):177-84. doi: 10.1161/CIRCEP.112.974220.
6
Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome.
J Electrocardiol. 1999;32 Suppl:158-65. doi: 10.1016/s0022-0736(99)90074-2.
7
Ionic and cellular mechanisms underlying the development of acquired Brugada syndrome in patients treated with antidepressants.
J Cardiovasc Electrophysiol. 2012 Apr;23(4):423-32. doi: 10.1111/j.1540-8167.2011.02196.x. Epub 2011 Oct 28.
8
Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome.
Cardiovasc Res. 2008 Jun 1;78(3):494-504. doi: 10.1093/cvr/cvn023. Epub 2008 Feb 5.
9
Sodium channel kinetic changes that produce Brugada syndrome or progressive cardiac conduction system disease.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H399-407. doi: 10.1152/ajpheart.01025.2005. Epub 2006 Jul 28.

引用本文的文献

1
Variability in reported midpoints of (in)activation of cardiac INa.
J Gen Physiol. 2025 Sep 1;157(5). doi: 10.1085/jgp.202413621. Epub 2025 Jul 16.
2
Phase 2 Re-Entry Without I: Role of Sodium Channel Kinetics in Brugada Syndrome Arrhythmias.
JACC Clin Electrophysiol. 2023 Dec;9(12):2459-2474. doi: 10.1016/j.jacep.2023.08.027. Epub 2023 Oct 11.
3
The Mechanism of Ajmaline and Thus Brugada Syndrome: Not Only the Sodium Channel!
Front Cardiovasc Med. 2021 Dec 23;8:782596. doi: 10.3389/fcvm.2021.782596. eCollection 2021.
4
Ca2+-dependent modulation of voltage-gated myocyte sodium channels.
Biochem Soc Trans. 2021 Nov 1;49(5):1941-1961. doi: 10.1042/BST20200604.
5
Predicting changes to I from missense mutations in human SCN5A.
Sci Rep. 2018 Aug 24;8(1):12797. doi: 10.1038/s41598-018-30577-5.
8
9
Basis for the Induction of Tissue-Level Phase-2 Reentry as a Repolarization Disorder in the Brugada Syndrome.
Biomed Res Int. 2015;2015:197586. doi: 10.1155/2015/197586. Epub 2015 Oct 25.
10
Cardiac electrophysiological substrate underlying the ECG phenotype and electrogram abnormalities in Brugada syndrome patients.
Circulation. 2015 Jun 2;131(22):1950-9. doi: 10.1161/CIRCULATIONAHA.114.013698. Epub 2015 Mar 25.

本文引用的文献

1
Cardiac sodium channel gene variants and sudden cardiac death in women.
Circulation. 2008 Jan 1;117(1):16-23. doi: 10.1161/CIRCULATIONAHA.107.736330. Epub 2007 Dec 10.
2
Cardiac sodium channel dysfunction in sudden infant death syndrome.
Circulation. 2007 Jan 23;115(3):368-76. doi: 10.1161/CIRCULATIONAHA.106.646513. Epub 2007 Jan 8.
4
Common sodium channel promoter haplotype in asian subjects underlies variability in cardiac conduction.
Circulation. 2006 Jan 24;113(3):338-44. doi: 10.1161/CIRCULATIONAHA.105.580811. Epub 2006 Jan 16.
5
Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome.
Circulation. 2005 Dec 13;112(24):3680-7. doi: 10.1161/CIRCULATIONAHA.105.520999.
7
Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more?
Cardiovasc Res. 2005 Aug 15;67(3):367-78. doi: 10.1016/j.cardiores.2005.03.005.
10
Cryptic 5' splice site activation in SCN5A associated with Brugada syndrome.
J Mol Cell Cardiol. 2005 Apr;38(4):555-60. doi: 10.1016/j.yjmcc.2004.10.015. Epub 2004 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验