Department of Biochemistry, University of Cambridge, Cambridge, U.K.
Physiological Laboratory, University of Cambridge, Cambridge, U.K.
Biochem Soc Trans. 2021 Nov 1;49(5):1941-1961. doi: 10.1042/BST20200604.
Voltage-dependent Na+ channel activation underlies action potential generation fundamental to cellular excitability. In skeletal and cardiac muscle this triggers contraction via ryanodine-receptor (RyR)-mediated sarcoplasmic reticular (SR) Ca2+ release. We here review potential feedback actions of intracellular [Ca2+] ([Ca2+]i) on Na+ channel activity, surveying their structural, genetic and cellular and functional implications, translating these to their possible clinical importance. In addition to phosphorylation sites, both Nav1.4 and Nav1.5 possess potentially regulatory binding sites for Ca2+ and/or the Ca2+-sensor calmodulin in their inactivating III-IV linker and C-terminal domains (CTD), where mutations are associated with a range of skeletal and cardiac muscle diseases. We summarize in vitro cell-attached patch clamp studies reporting correspondingly diverse, direct and indirect, Ca2+ effects upon maximal Nav1.4 and Nav1.5 currents (Imax) and their half-maximal voltages (V1/2) characterizing channel gating, in cellular expression systems and isolated myocytes. Interventions increasing cytoplasmic [Ca2+]i down-regulated Imax leaving V1/2 constant in native loose patch clamped, wild-type murine skeletal and cardiac myocytes. They correspondingly reduced action potential upstroke rates and conduction velocities, causing pro-arrhythmic effects in intact perfused hearts. Genetically modified murine RyR2-P2328S hearts modelling catecholaminergic polymorphic ventricular tachycardia (CPVT), recapitulated clinical ventricular and atrial pro-arrhythmic phenotypes following catecholaminergic challenge. These accompanied reductions in action potential conduction velocities. The latter were reversed by flecainide at RyR-blocking concentrations specifically in RyR2-P2328S as opposed to wild-type hearts, suggesting a basis for its recent therapeutic application in CPVT. We finally explore the relevance of these mechanisms in further genetic paradigms for commoner metabolic and structural cardiac disease.
电压门控钠离子通道的激活是产生细胞兴奋性所必需的动作电位的基础。在骨骼肌和心肌中,它通过兰尼碱受体(RyR)介导的肌浆网(SR)Ca2+释放引发收缩。在这里,我们回顾了细胞内[Ca2+]([Ca2+]i)对钠通道活性的潜在反馈作用,调查了它们的结构、遗传和细胞功能意义,并将这些意义转化为它们可能的临床重要性。除了磷酸化位点外,Nav1.4 和 Nav1.5 都在其失活的 III-IV 连接和 C 端结构域(CTD)中具有潜在的调节性结合位点,用于 Ca2+和/或 Ca2+传感器钙调蛋白,其中突变与一系列骨骼肌和心肌疾病有关。我们总结了体外细胞贴附膜片钳研究报告,这些研究报告了在细胞表达系统和分离的肌细胞中,对最大 Nav1.4 和 Nav1.5 电流(Imax)及其门控的半最大电压(V1/2)具有相应不同的直接和间接的 Ca2+作用。增加细胞质[Ca2+]i 的干预措施使 Imax 下调,而 V1/2 在天然松散膜片钳钳制的野生型鼠骨骼肌和心肌细胞中保持不变。它们相应地降低了动作电位上升率和传导速度,导致在完整灌流心脏中出现致心律失常作用。模拟儿茶酚胺多形性室性心动过速(CPVT)的遗传修饰鼠 RyR2-P2328S 心脏,在儿茶酚胺刺激后,复制了临床室性和房性致心律失常表型。这伴随着动作电位传导速度的降低。在 RyR2-P2328S 而不是野生型心脏中,特定于 RyR 阻断浓度的氟卡尼逆转了这些降低,这表明其在 CPVT 中近期治疗应用的基础。最后,我们探讨了这些机制在更常见的代谢和结构性心脏疾病的其他遗传范例中的相关性。