Suppr超能文献

血清素诱导的峰电位发放与突触周围活动解离对血氧水平依赖性功能磁共振成像的影响。

The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI.

作者信息

Rauch Alexander, Rainer Gregor, Logothetis Nikos K

机构信息

Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, D-72076 Tübingen, Germany.

出版信息

Proc Natl Acad Sci U S A. 2008 May 6;105(18):6759-64. doi: 10.1073/pnas.0800312105. Epub 2008 May 2.

Abstract

The relationship of the blood oxygen-level-dependent (BOLD) signal to its underlying neuronal activity is still poorly understood. Combined physiology and functional MRI experiments suggested that local field potential (LFP) is a better predictor of the BOLD signal than multiunit activity (MUA). To further explore this relationship, we simultaneously recorded BOLD and electrophysiological activity while inducing a dissociation of MUA from LFP activity with injections of the neuromodulator BP554 into the primary visual cortex of anesthetized monkeys. BP554 is a 5-HT1A agonist acting primarily on the membrane of efferent neurons by potassium-induced hyperpolarization. Its infusion in visual cortex reliably reduced MUA without affecting either LFP or BOLD activity. This finding suggests that the efferents of a neuronal network pose relatively little metabolic burden compared with the overall presynaptic and postsynaptic processing of incoming afferents. We discuss implications of this finding for the interpretation of BOLD activity.

摘要

血氧水平依赖(BOLD)信号与其潜在神经元活动之间的关系仍未得到充分理解。生理学与功能磁共振成像相结合的实验表明,与多单元活动(MUA)相比,局部场电位(LFP)是BOLD信号更好的预测指标。为了进一步探究这种关系,我们在向麻醉猴子的初级视觉皮层注射神经调节剂BP554以诱导MUA与LFP活动分离的同时,同步记录了BOLD和电生理活动。BP554是一种5-HT1A激动剂,主要通过钾离子诱导的超极化作用于传出神经元的膜。向视觉皮层注入该物质可可靠地降低MUA,而不影响LFP或BOLD活动。这一发现表明,与传入神经的整体突触前和突触后处理相比,神经元网络的传出神经所带来的代谢负担相对较小。我们讨论了这一发现对解释BOLD活动的意义。

相似文献

1
The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6759-64. doi: 10.1073/pnas.0800312105. Epub 2008 May 2.
4
Comparisons of the dynamics of local field potential and multiunit activity signals in macaque visual cortex.
J Neurosci. 2010 Oct 13;30(41):13739-49. doi: 10.1523/JNEUROSCI.0743-10.2010.
5
Neurophysiology of the BOLD fMRI signal in awake monkeys.
Curr Biol. 2008 May 6;18(9):631-40. doi: 10.1016/j.cub.2008.03.054. Epub 2008 Apr 24.
6
A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli.
Cereb Cortex. 2004 Aug;14(8):881-91. doi: 10.1093/cercor/bhh047. Epub 2004 Apr 14.
7
Coupling of neural activity and fMRI-BOLD in the motion area MT.
Magn Reson Imaging. 2010 Oct;28(8):1087-94. doi: 10.1016/j.mri.2009.12.028. Epub 2010 Feb 19.
8
The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.
Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29;357(1424):1003-37. doi: 10.1098/rstb.2002.1114.
10
Spatial relationship between neuronal activity and BOLD functional MRI.
Neuroimage. 2004 Mar;21(3):876-85. doi: 10.1016/j.neuroimage.2003.10.018.

引用本文的文献

1
Does V1 response suppression initiate binocular rivalry?
iScience. 2023 Jul 8;26(8):107359. doi: 10.1016/j.isci.2023.107359. eCollection 2023 Aug 18.
2
The impact of wearing a KN95 face mask on human brain function: evidence from resting state functional magnetic resonance imaging.
Front Neurol. 2023 May 19;14:1102335. doi: 10.3389/fneur.2023.1102335. eCollection 2023.
4
Visualizing advances in the future of primate neuroscience research.
Curr Res Neurobiol. 2022 Dec 13;4:100064. doi: 10.1016/j.crneur.2022.100064. eCollection 2023.
5
Combining magnetic resonance imaging with readout and/or perturbation of neural activity in animal models: Advantages and pitfalls.
Front Neurosci. 2022 Jul 15;16:938665. doi: 10.3389/fnins.2022.938665. eCollection 2022.
6
Persistent Activity During Working Memory From Front to Back.
Front Neural Circuits. 2021 Jul 21;15:696060. doi: 10.3389/fncir.2021.696060. eCollection 2021.
8
Theta, but Not Gamma Oscillations in Area V4 Depend on Input from Primary Visual Cortex.
Curr Biol. 2021 Feb 8;31(3):635-642.e3. doi: 10.1016/j.cub.2020.10.091. Epub 2020 Dec 4.
9
Regional variation in neurovascular coupling and why we still lack a Rosetta Stone.
Philos Trans R Soc Lond B Biol Sci. 2021 Jan 4;376(1815):20190634. doi: 10.1098/rstb.2019.0634. Epub 2020 Nov 16.
10
More than just summed neuronal activity: how multiple cell types shape the BOLD response.
Philos Trans R Soc Lond B Biol Sci. 2021 Jan 4;376(1815):20190630. doi: 10.1098/rstb.2019.0630. Epub 2020 Nov 16.

本文引用的文献

1
Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans Neural Netw. 1999;10(3):626-34. doi: 10.1109/72.761722.
2
Pharmacological MRI combined with electrophysiology in non-human primates: effects of Lidocaine on primary visual cortex.
Neuroimage. 2008 Apr 1;40(2):590-600. doi: 10.1016/j.neuroimage.2007.12.009. Epub 2008 Jan 24.
3
Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity.
Nat Neurosci. 2007 Oct;10(10):1308-12. doi: 10.1038/nn1977. Epub 2007 Sep 9.
5
Brain work and brain imaging.
Annu Rev Neurosci. 2006;29:449-76. doi: 10.1146/annurev.neuro.29.051605.112819.
6
Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex.
Science. 2005 Aug 5;309(5736):951-4. doi: 10.1126/science.1110913.
7
Delayed hemodynamic responses in schizophrenia.
Neuroimage. 2005 Jul 1;26(3):922-31. doi: 10.1016/j.neuroimage.2005.03.001. Epub 2005 Apr 15.
8
Independent component analysis: an introduction.
Trends Cogn Sci. 2002 Feb 1;6(2):59-64. doi: 10.1016/s1364-6613(00)01813-1.
9
The BOLD onset transient: identification of novel functional differences in schizophrenia.
Neuroimage. 2005 Apr 15;25(3):771-82. doi: 10.1016/j.neuroimage.2004.12.025.
10
Neuronal circuits of the neocortex.
Annu Rev Neurosci. 2004;27:419-51. doi: 10.1146/annurev.neuro.27.070203.144152.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验