Suppr超能文献

周期性环境中流行阈值的共振

Resonance of the epidemic threshold in a periodic environment.

作者信息

Bacaër Nicolas, Abdurahman Xamxinur

机构信息

Institut de Recherche pour le Développement, UR 079, 93143, Bondy, France.

出版信息

J Math Biol. 2008 Nov;57(5):649-73. doi: 10.1007/s00285-008-0183-1. Epub 2008 May 7.

Abstract

Resonance between some natural period of an endemic disease and a seasonal periodic contact rate has been the subject of intensive study. This paper does not focus on resonance for endemic diseases but on resonance for emerging diseases. Periodicity can have an important impact on the initial growth rate and therefore on the epidemic threshold. Resonance occurs when the Euler-Lotka equation has a complex root with an imaginary part (i.e., a natural frequency) close to the angular frequency of the contact rate and a real part not too far from the Malthusian parameter. This is a kind of continuous-time analogue of work by Tuljapurkar on discrete-time population models, which in turn was motivated by the work by Coale on continuous-time demographic models with a periodic birth. We illustrate this resonance phenomenon on several simple epidemic models with contacts varying periodically on a weekly basis, and explain some surprising differences, e.g., between a periodic SEIR model with an exponentially distributed latency and the same model but with a fixed latency.

摘要

地方病的某些自然周期与季节性周期性接触率之间的共振一直是深入研究的主题。本文关注的不是地方病的共振,而是新发疾病的共振。周期性可能对初始增长率产生重要影响,进而影响流行阈值。当欧拉 - 洛特卡方程有一个复根,其虚部(即自然频率)接近接触率的角频率且实部离马尔萨斯参数不太远时,就会发生共振。这是图尔贾普尔卡尔关于离散时间种群模型工作的一种连续时间类似情况,而图尔贾普尔卡尔的工作又是受科尔关于具有周期性出生的连续时间人口模型的工作启发。我们在几个简单的流行病模型中说明了这种共振现象,这些模型的接触率每周周期性变化,并解释了一些惊人的差异,例如,具有指数分布潜伏期的周期性SEIR模型与具有固定潜伏期的相同模型之间的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验