Graduate School of Mathematical Sciences, University of Tokyo, Komaba Meguro-ku, Tokyo, Japan.
Math Biosci Eng. 2012 Apr;9(2):313-46. doi: 10.3934/mbe.2012.9.313.
Since the classical stable population theory in demography by Sharpe and Lotka, the sign relation sign(λ0)=sign(R0-1) between the basic reproduction number R0 and the Malthusian parameter (the intrinsic rate of natural increase) λ0 has played a central role in population theory and its applications, because it connects individual's average reproductivity described by life cycle parameters to growth character of the whole population. Since R0 is originally defined for linear population evolution process in a constant environment, it is an important extension if we could formulate the same kind of threshold principle for population growth in time-heterogeneous environments. Since the mid-1990s, several authors proposed some ideas to extend the definition of R0 so that it can be applied to population dynamics in periodic environments. In particular, the definition of R0 in a periodic environment by Bacaer and Guernaoui (J. Math. Biol. 53, 2006) is most important, because their definition of R0 in a periodic environment can be interpreted as the asymptotic per generation growth rate, so from the generational point of view, it can be seen as a direct extension of the most successful definition of R0 in a constant environment by Diekmann, Heesterbeek and Metz ( J. Math. Biol. 28, 1990). In this paper, we propose a new approach to establish the sign relation between R0 and the Malthusian parameter λ0 for linear structured population dynamics in a periodic environment. Our arguments depend on the uniform primitivity of positive evolutionary system, which leads the weak ergodicity and the existence of exponential solution in periodic environments. For typical finite and infinite dimensional linear population models, we prove that a positive exponential solution exists and the sign relation holds between the Malthusian parameter, which is defined as the exponent of the exponential solution, and R0 given by the spectral radius of the next generation operator by Bacaer and Guernaoui's definition.
自Sharpe 和 Lotka 在人口学中提出经典的稳定人口理论以来,基本再生数 R0 和马尔萨斯参数(内禀自然增长率)λ0 之间的符号关系 sign(λ0)=sign(R0-1) 在人口理论及其应用中一直起着核心作用,因为它将生命周期参数描述的个体平均生殖力与整个种群的增长特征联系起来。由于 R0 最初是为常数环境下的线性人口演化过程定义的,因此如果我们能够为时变环境中的人口增长制定相同类型的阈值原则,这将是一个重要的扩展。自 20 世纪 90 年代中期以来,几位作者提出了一些扩展 R0 定义的思路,以便将其应用于周期性环境中的人口动态。特别是,Bacaer 和 Guernaoui(J. Math. Biol. 53, 2006)在周期性环境中对 R0 的定义最为重要,因为他们在周期性环境中对 R0 的定义可以解释为渐近每代增长率,因此从代际的角度来看,它可以看作是对 Diekmann、Heesterbeek 和 Metz(J. Math. Biol. 28, 1990)在常数环境中最成功的 R0 定义的直接扩展。在本文中,我们提出了一种新方法来建立周期性环境下线性结构人口动态中 R0 和马尔萨斯参数 λ0 之间的符号关系。我们的论点取决于正进化系统的一致原始性,这导致了弱遍历性和周期性环境中指数解的存在。对于典型的有限维和无限维线性人口模型,我们证明了存在正指数解,并且定义为指数解指数的马尔萨斯参数与由 Bacaer 和 Guernaoui 的定义给出的下一代算子谱半径之间存在符号关系 R0。