Suppr超能文献

用于体内检测口腔肿瘤的多光谱光学成像设备。

Multispectral optical imaging device for in vivo detection of oral neoplasia.

作者信息

Roblyer Darren, Richards-Kortum Rebecca, Sokolov Konstantin, El-Naggar Adel K, Williams Michelle D, Kurachi Cristina, Gillenwater Ann M

机构信息

Rice University, Department of Bioengineering, 6100 Main St., Houston, Texas 77251-1892, USA.

出版信息

J Biomed Opt. 2008 Mar-Apr;13(2):024019. doi: 10.1117/1.2904658.

Abstract

A multispectral digital microscope (MDM) is designed and constructed as a tool to improve detection of oral neoplasia. The MDM acquires in vivo images of oral tissue in fluorescence, narrow-band (NB) reflectance, and orthogonal polarized reflectance (OPR) modes, to enable evaluation of lesions that may not exhibit high contrast under standard white light illumination. The device rapidly captures image sequences so that the diagnostic value of each modality can be qualitatively and quantitatively evaluated alone and in combination. As part of a pilot clinical trial, images are acquired from normal volunteers and patients with precancerous and cancerous lesions. In normal subjects, the visibility of vasculature can be enhanced by tuning the reflectance illumination wavelength and polarization. In patients with histologically confirmed neoplasia, we observe decreased blue/green autofluorescence and increased red autofluorescence in lesions, and increased visibility of vasculature using NB and OPR imaging. The perceived lesion borders change with imaging modality, suggesting that multimodal imaging has the potential to provide additional diagnostic information not available using standard white light illumination or by using a single imaging mode alone.

摘要

一种多光谱数字显微镜(MDM)被设计并构建为一种用于改善口腔肿瘤检测的工具。MDM以荧光、窄带(NB)反射率和正交偏振反射率(OPR)模式获取口腔组织的体内图像,以便能够评估在标准白光照明下可能未表现出高对比度的病变。该设备能快速捕获图像序列,从而可以单独或组合地对每种模式的诊断价值进行定性和定量评估。作为一项初步临床试验的一部分,从正常志愿者以及患有癌前病变和癌性病变的患者身上获取图像。在正常受试者中,通过调整反射照明波长和偏振可以增强血管的可见性。在组织学确诊为肿瘤的患者中,我们观察到病变部位的蓝/绿自发荧光减少,红自发荧光增加,并且使用NB和OPR成像时血管的可见性增加。所感知到的病变边界随成像模式而变化,这表明多模态成像有可能提供使用标准白光照明或单独使用单一成像模式无法获得的额外诊断信息。

相似文献

1
Multispectral optical imaging device for in vivo detection of oral neoplasia.
J Biomed Opt. 2008 Mar-Apr;13(2):024019. doi: 10.1117/1.2904658.
5
Assessment of oral mucosal lesions with autofluorescence imaging and reflectance spectroscopy.
J Am Dent Assoc. 2016 Aug;147(8):650-60. doi: 10.1016/j.adaj.2016.03.013. Epub 2016 Apr 23.
6
Raman microspectroscopy for skin cancer detection in vitro.
J Biomed Opt. 2008 Mar-Apr;13(2):024013. doi: 10.1117/1.2899155.
7
Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer.
J Biomed Opt. 2008 Jul-Aug;13(4):041306. doi: 10.1117/1.2952007.
9
Measurement of 2-D SpO2 distribution in skin tissue by multispectral imaging with depth selectivity control.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1968-71. doi: 10.1109/IEMBS.2006.259670.
10
Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis.
Skin Res Technol. 2008 May;14(2):173-9. doi: 10.1111/j.1600-0846.2007.00274.x.

引用本文的文献

2
Polarized hyperspectral microscopic imaging for collagen visualization on pathologic slides of head and neck squamous cell carcinoma.
Proc SPIE Int Soc Opt Eng. 2023 Jan-Feb;12382. doi: 10.1117/12.2655831. Epub 2023 Mar 15.
4
U-shaped fusion convolutional transformer based workflow for fast optical coherence tomography angiography generation in lips.
Biomed Opt Express. 2023 Oct 5;14(11):5583-5601. doi: 10.1364/BOE.502085. eCollection 2023 Nov 1.
5
Compact and ultracompact spectral imagers: technology and applications in biomedical imaging.
J Biomed Opt. 2023 Apr;28(4):040901. doi: 10.1117/1.JBO.28.4.040901. Epub 2023 Apr 5.
7
Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau.
PNAS Nexus. 2022 Aug 19;1(4):pgac164. doi: 10.1093/pnasnexus/pgac164. eCollection 2022 Sep.
8
Advanced Optical Imaging-Guided Nanotheranostics towards Personalized Cancer Drug Delivery.
Nanomaterials (Basel). 2022 Jan 26;12(3):399. doi: 10.3390/nano12030399.

本文引用的文献

2
Simple device for the direct visualization of oral-cavity tissue fluorescence.
J Biomed Opt. 2006 Mar-Apr;11(2):024006. doi: 10.1117/1.2193157.
4
Orthogonal polarization spectral (OPS) imaging and topographical characteristics of oral squamous cell carcinoma.
Oral Oncol. 2006 Jul;42(6):581-5. doi: 10.1016/j.oraloncology.2005.10.014. Epub 2006 Feb 15.
5
Abnormal oral mucosal light reflectance in bronchopulmonary dysplasia.
Early Hum Dev. 2006 Apr;82(4):273-8. doi: 10.1016/j.earlhumdev.2005.09.013. Epub 2005 Dec 9.
6
Global cancer statistics, 2002.
CA Cancer J Clin. 2005 Mar-Apr;55(2):74-108. doi: 10.3322/canjclin.55.2.74.
7
The status of in vivo autofluorescence spectroscopy and imaging for oral oncology.
Oral Oncol. 2005 Feb;41(2):117-31. doi: 10.1016/j.oraloncology.2004.07.007.
8
Cancer statistics, 2005.
CA Cancer J Clin. 2005 Jan-Feb;55(1):10-30. doi: 10.3322/canjclin.55.1.10.
9
Optical imaging of the cervix.
Cancer. 2003 Nov 1;98(9 Suppl):2015-27. doi: 10.1002/cncr.11678.
10
Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin.
Cancer. 1953 Sep;6(5):963-8. doi: 10.1002/1097-0142(195309)6:5<963::aid-cncr2820060515>3.0.co;2-q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验