Peng Bo, Yu Robert K, Dehoff Kevin L, Amos Christopher I
Department of Epidemiology, The University of Texas, M.D. Anderson Cancer Center, 1155 Pressler Boulevard, Unit 1340, Houston, Texas 77030, USA.
BMC Proc. 2007;1 Suppl 1(Suppl 1):S156. doi: 10.1186/1753-6561-1-s1-s156. Epub 2007 Dec 18.
Variance-components and regression-based methods are frequently used to map quantitative trait loci. The normality of the trait values is usually assumed and violation of this assumption can have a detrimental effect on the power and type I error of such analyses. Various transformations can be used, but appropriate transformations usually require careful analysis of individual traits, which is not feasible for data sets with a large number of traits like those in Problem 1 of Genetic Analysis Workshop 15 (GAW15). A semiparametric variance-components method can estimate the transformation along with the model parameters, but existing methods are computationally intensive. In this paper, we propose the use of empirical normal quantile transformation to normalize the scaled rank of trait values using an inverse normal transformation. Despite its simplicity and potential loss of information, this transformation is shown, by extensive simulations, to have good control of power and type I error, even when compared with the semiparametric method. To investigate the impact of such a transformation on real data sets, we apply variance-components and variance-regression methods to the expression data of GAW15 and compare the results before and after transformation.
方差成分法和基于回归的方法经常用于定位数量性状基因座。通常假定性状值服从正态分布,而违背这一假定可能会对这类分析的功效和I型错误产生不利影响。可以使用各种变换方法,但合适的变换通常需要对各个性状进行仔细分析,而对于像遗传分析研讨会15(GAW15)问题1中那样具有大量性状的数据集来说,这是不可行的。一种半参数方差成分法可以在估计模型参数的同时估计变换,但现有方法计算量很大。在本文中,我们建议使用经验正态分位数变换,通过逆正态变换对性状值的缩放秩进行归一化。尽管这种变换方法简单且可能会损失信息,但通过大量模拟表明,即使与半参数方法相比,它也能很好地控制功效和I型错误。为了研究这种变换对实际数据集的影响,我们将方差成分法和方差回归法应用于GAW15的表达数据,并比较变换前后的结果。