Suppr超能文献

一种用于在一般系谱中定位数量性状基因座的强大且稳健的方法。

A powerful and robust method for mapping quantitative trait loci in general pedigrees.

作者信息

Diao G, Lin D Y

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599-7420, USA.

出版信息

Am J Hum Genet. 2005 Jul;77(1):97-111. doi: 10.1086/431683. Epub 2005 May 25.

Abstract

The variance-components model is the method of choice for mapping quantitative trait loci in general human pedigrees. This model assumes normally distributed trait values and includes a major gene effect, random polygenic and environmental effects, and covariate effects. Violation of the normality assumption has detrimental effects on the type I error and power. One possible way of achieving normality is to transform trait values. The true transformation is unknown in practice, and different transformations may yield conflicting results. In addition, the commonly used transformations are ineffective in dealing with outlying trait values. We propose a novel extension of the variance-components model that allows the true transformation function to be completely unspecified. We present efficient likelihood-based procedures to estimate variance components and to test for genetic linkage. Simulation studies demonstrated that the new method is as powerful as the existing variance-components methods when the normality assumption holds; when the normality assumption fails, the new method still provides accurate control of type I error and is substantially more powerful than the existing methods. We performed a genomewide scan of monoamine oxidase B for the Collaborative Study on the Genetics of Alcoholism. In that study, the results that are based on the existing variance-components method changed dramatically when three outlying trait values were excluded from the analysis, whereas our method yielded essentially the same answers with or without those three outliers. The computer program that implements the new method is freely available.

摘要

方差成分模型是在一般人类家系中定位数量性状基因座的首选方法。该模型假设性状值呈正态分布,并包括一个主基因效应、随机多基因效应和环境效应以及协变量效应。违反正态性假设会对I型错误率和检验效能产生不利影响。实现正态性的一种可能方法是对性状值进行变换。在实际中真实的变换是未知的,并且不同的变换可能会产生相互矛盾的结果。此外,常用的变换在处理异常性状值时效果不佳。我们提出了方差成分模型的一种新颖扩展,它允许完全不指定真实的变换函数。我们给出了基于似然的有效方法来估计方差成分并检验遗传连锁。模拟研究表明,当正态性假设成立时,新方法与现有的方差成分方法具有相同的检验效能;当正态性假设不成立时,新方法仍然能够准确控制I型错误率,并且检验效能比现有方法高得多。我们对酒精中毒遗传学合作研究中的单胺氧化酶B进行了全基因组扫描。在该研究中,当从分析中排除三个异常性状值时,基于现有方差成分方法的结果发生了巨大变化,而我们的方法无论是否包含这三个异常值都得出了基本相同的答案。实现新方法的计算机程序可免费获取。

相似文献

6
Robust score statistics for QTL linkage analysis.用于QTL连锁分析的稳健得分统计量
Am J Hum Genet. 2008 Mar;82(3):567-82. doi: 10.1016/j.ajhg.2007.11.012. Epub 2008 Feb 21.

引用本文的文献

本文引用的文献

5
The genetics of cross-sectional and longitudinal body mass index.横断面与纵向体重指数的遗传学
BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S14. doi: 10.1186/1471-2156-4-S1-S14.
6
Mapping quantitative trait loci in oligogenic models.在寡基因模型中定位数量性状基因座
Biostatistics. 2001 Jun;2(2):147-62. doi: 10.1093/biostatistics/2.2.147.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验