ten Caat Michael, Maurits Natasha M, Roerdink Jos B T M
Institute of Mathematics and Computing Science, The Netherlands.
IEEE Trans Vis Comput Graph. 2008 Jul-Aug;14(4):756-71. doi: 10.1109/TVCG.2008.21.
A typical data-driven visualization of electroencephalography (EEG) coherence is a graph layout, with vertices representing electrodes and edges representing significant coherences between electrode signals. A drawback of this layout is its visual clutter for multichannel EEG. To reduce clutter, we define a functional unit (FU) as a data-driven region of interest (ROI). An FU is a spatially connected set of electrodes recording pairwise significantly coherent signals, represented in the coherence graph by a spatially connected clique. Earlier we presented two methods to detect FUs: a maximal clique based (MCB) method (time complexity O(3n/3), with n being the number of vertices) and a more efficient watershed based (WB) method (time complexity O (n2 log n)). To reduce the potential over-segmentation of the WB method, we introduce here an improved WB (IWB) method (time complexity O(n2 log n)). The IWB method merges basins representing FUs during the segmentation if they are spatially connected and if their union is a clique. The WB and IWB methods are both up to a factor of 100,000 faster than the MCB method for a typical multichannel setting with 128 EEG channels, thus making interactive visualization of multichannel EEG coherence possible. Results show that considering the MCB method as the gold standard, the difference between IWB and MCB FU maps is smaller than between WB and MCB FU maps. We also introduce two novel group maps for data-driven group analysis as extensions of the IWB method. First, the group mean coherence map preserves dominant features from a collection of individual FU maps. Second, the group FU size map visualizes the average FU size per electrode across a collection of individual FU maps. Finally, we employ an extensive case study to evaluate the IWB FU map and the two new group maps for data-driven group analysis. Results, in accordance with the conventional findings, indicate differences in EEG coherence between younger and older adults. However, they also suggest that an initial selection of hypothesis-driven ROIs could be extended with additional data-driven ROIs.
脑电图(EEG)相干性的典型数据驱动可视化是一种图形布局,其中顶点代表电极,边代表电极信号之间的显著相干性。这种布局的一个缺点是对于多通道EEG会产生视觉上的混乱。为了减少混乱,我们将功能单元(FU)定义为一个数据驱动的感兴趣区域(ROI)。一个FU是一组在空间上相连的电极,记录成对的显著相干信号,在相干图中由一个空间上相连的团表示。之前我们提出了两种检测FU的方法:一种基于最大团(MCB)的方法(时间复杂度为O(3n/3),其中n是顶点的数量)和一种更高效的基于分水岭(WB)的方法(时间复杂度为O(n2 log n))。为了减少WB方法潜在的过度分割,我们在此引入一种改进的WB(IWB)方法(时间复杂度为O(n2 log n))。IWB方法在分割过程中,如果代表FU的流域在空间上相连且它们的并集是一个团,就会合并这些流域。对于具有128个EEG通道的典型多通道设置,WB和IWB方法都比MCB方法快100,000倍,从而使多通道EEG相干性的交互式可视化成为可能。结果表明,以MCB方法作为金标准,IWB和MCB的FU图之间的差异小于WB和MCB的FU图之间的差异。我们还引入了两种新颖的组图用于数据驱动的组分析,作为IWB方法的扩展。首先,组平均相干图保留了来自一组个体FU图的主要特征。其次,组FU大小图可视化了跨一组个体FU图中每个电极的平均FU大小。最后,我们进行了一个广泛的案例研究,以评估IWB的FU图和用于数据驱动组分析的两个新组图。结果与传统研究结果一致,表明年轻人和老年人在EEG相干性上存在差异。然而,它们也表明假设驱动的ROI的初始选择可以通过额外的数据驱动ROI进行扩展。