Departamento de Tecnología, Universidad Pedagógica Nacional, Bogotá 111321, Colombia.
Department of Electrical and Electronics Engineering, School of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia.
Sensors (Basel). 2021 Sep 29;21(19):6503. doi: 10.3390/s21196503.
The use of imagined speech with electroencephalographic (EEG) signals is a promising field of brain-computer interfaces (BCI) that seeks communication between areas of the cerebral cortex related to language and devices or machines. However, the complexity of this brain process makes the analysis and classification of this type of signals a relevant topic of research. The goals of this study were: to develop a new algorithm based on Deep Learning (DL), referred to as CNNeeg1-1, to recognize EEG signals in imagined vowel tasks; to create an imagined speech database with 50 subjects specialized in imagined vowels from the Spanish language (/a/,/e/,/i/,/o/,/u/); and to contrast the performance of the CNNeeg1-1 algorithm with the DL Shallow CNN and EEGNet benchmark algorithms using an open access database (BD1) and the newly developed database (BD2). In this study, a mixed variance analysis of variance was conducted to assess the intra-subject and inter-subject training of the proposed algorithms. The results show that for intra-subject training analysis, the best performance among the Shallow CNN, EEGNet, and CNNeeg1-1 methods in classifying imagined vowels (/a/,/e/,/i/,/o/,/u/) was exhibited by CNNeeg1-1, with an accuracy of 65.62% for BD1 database and 85.66% for BD2 database.
使用脑电图 (EEG) 信号进行想象性言语是脑机接口 (BCI) 的一个有前途的领域,它旨在实现与语言相关的大脑皮层区域和设备或机器之间的交流。然而,这种大脑过程的复杂性使得对这种类型的信号的分析和分类成为一个相关的研究课题。本研究的目的是:开发一种基于深度学习 (DL) 的新算法,称为 CNNeeg1-1,用于识别想象性元音任务中的 EEG 信号;创建一个包含 50 名专门从事西班牙语想象元音的想象性语音数据库 (/a/、/e/、/i/、/o/、/u/);并使用开放访问数据库 (BD1) 和新开发的数据库 (BD2) ,对比 CNNeeg1-1 算法与 DL Shallow CNN 和 EEGNet 基准算法的性能。在这项研究中,进行了混合方差分析,以评估所提出算法的个体内和个体间训练。结果表明,对于个体内训练分析,在对想象性元音 (/a/、/e/、/i/、/o/、/u/)进行分类时,Shallow CNN、EEGNet 和 CNNeeg1-1 方法中表现最好的是 CNNeeg1-1,BD1 数据库的准确率为 65.62%,BD2 数据库的准确率为 85.66%。