Li Yong, Kovach Amanda, Suino-Powell Kelly, Martynowski Dariusz, Xu H Eric
Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.
J Biol Chem. 2008 Jul 4;283(27):19132-9. doi: 10.1074/jbc.M802040200. Epub 2008 May 9.
The functional interaction between the peroxisome proliferator-activated receptor gamma (PPARgamma) and its coactivator PGC-1alpha is crucial for the normal physiology of PPARgamma and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPARgamma ligand-binding domain bound to rosiglitazone and to a large PGC-1alpha fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1alpha and the PPARgamma coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifs tested, and only this motif of the two LXXLL-related motifs in PGC-1alpha is capable of binding to PPARgamma. Our studies reveal that the strong interaction of PGC-1alpha and PPARgamma is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1alpha indicate that the first PGC-1alpha motif is necessary and sufficient for PGC-1alpha to coactivate PPARgamma in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPARgamma and PGC-1alpha in glucose homeostasis and adipocyte differentiation.
过氧化物酶体增殖物激活受体γ(PPARγ)与其共激活因子PGC-1α之间的功能相互作用对于PPARγ的正常生理功能及其对罗格列酮抗糖尿病治疗的药理反应至关重要。在此,我们报告了与罗格列酮以及包含两个LXXLL相关基序的大的PGC-1α片段结合的PPARγ配体结合域的晶体结构。该结构揭示了通过PGC-1α的第一个LXXLL基序和PPARγ共激活因子结合位点介导的关键接触。通过生化和结构研究的结合,我们证明第一个LXXLL基序在所有测试的核受体共激活因子基序中是最有效的,并且PGC-1α中两个LXXLL相关基序中只有这个基序能够与PPARγ结合。我们的研究表明,PGC-1α与PPARγ之间的强相互作用是通过疏水和特定的极性相互作用介导的。全长PGC-1α背景下的突变表明,第一个PGC-1α基序对于PGC-1α在存在或不存在罗格列酮的情况下共激活PPARγ是必要且充分的。这些结果为PPARγ与PGC-1α在葡萄糖稳态和脂肪细胞分化中的特异性募集和功能相互作用提供了分子基础。