Satapati Santhosh, He Tianteng, Inagaki Takeshi, Potthoff Matthew, Merritt Matthew E, Esser Victoria, Mangelsdorf David J, Kliewer Steven A, Browning Jeffrey D, Burgess Shawn C
The Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Diabetes. 2008 Aug;57(8):2012-21. doi: 10.2337/db08-0226. Epub 2008 May 9.
Fluxes through mitochondrial pathways are defective in insulin-resistant skeletal muscle, but it is unclear whether similar mitochondrial defects play a role in the liver during insulin resistance and/or diabetes. The purpose of this study is to determine whether abnormal mitochondrial metabolism plays a role in the dysregulation of both hepatic fat and glucose metabolism during diabetes.
Mitochondrial fluxes were measured using (2)H/(13)C tracers and nuclear magnetic resonance spectroscopy in ZDF rats during early and advanced diabetes. To determine whether defects in hepatic fat oxidation can be corrected by peroxisome proliferator-activated receptor (PPAR-)-alpha activation, rats were treated with WY14,643 for 3 weeks before tracer administration.
Hepatic mitochondrial fat oxidation in the diabetic liver was impaired twofold secondary to decreased ketogenesis, but tricarboxylic acid (TCA) cycle activity and pyruvate carboxylase flux were normal in newly diabetic rats and elevated in older rats. Treatment of diabetic rats with a PPAR-alpha agonist induced hepatic fat oxidation via ketogenesis and hepatic TCA cycle activity but failed to lower fasting glycemia or endogenous glucose production. In fact, PPAR-alpha agonism overstimulated mitochondrial TCA cycle flux and induced pyruvate carboxylase flux and gluconeogenesis in lean rats.
The impairment of certain mitochondrial fluxes, but preservation or induction of others, suggests a complex defect in mitochondrial metabolism in the diabetic liver. These data indicate an important codependence between hepatic fat oxidation and gluconeogenesis in the normal and diabetic state and potentially explain the sometimes equivocal effect of PPAR-alpha agonists on glycemia.
胰岛素抵抗的骨骼肌中线粒体途径的通量存在缺陷,但尚不清楚在胰岛素抵抗和/或糖尿病期间,类似的线粒体缺陷在肝脏中是否起作用。本研究的目的是确定异常的线粒体代谢在糖尿病期间肝脏脂肪和葡萄糖代谢失调中是否起作用。
在ZDF大鼠糖尿病早期和晚期,使用(2)H/(13)C示踪剂和核磁共振波谱法测量线粒体通量。为了确定肝脏脂肪氧化缺陷是否可通过过氧化物酶体增殖物激活受体(PPAR)-α激活来纠正,在给予示踪剂前3周,用WY14,643处理大鼠。
糖尿病肝脏中的肝线粒体脂肪氧化因生酮减少而受损两倍,但新患糖尿病大鼠的三羧酸(TCA)循环活性和丙酮酸羧化酶通量正常,而老龄大鼠则升高。用PPAR-α激动剂治疗糖尿病大鼠可通过生酮和肝脏TCA循环活性诱导肝脏脂肪氧化,但未能降低空腹血糖或内源性葡萄糖生成。事实上,PPAR-α激动作用过度刺激了瘦大鼠的线粒体TCA循环通量,并诱导了丙酮酸羧化酶通量和糖异生。
某些线粒体通量受损,但其他通量得以保留或诱导,提示糖尿病肝脏中线粒体代谢存在复杂缺陷。这些数据表明在正常和糖尿病状态下,肝脏脂肪氧化和糖异生之间存在重要的相互依存关系,并可能解释PPAR-α激动剂对血糖有时产生的矛盾作用。