Rouder Jeffrey N, Lu Jun, Morey Richard D, Sun Dongchu, Speckman Paul L
Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
J Exp Psychol Gen. 2008 May;137(2):370-89. doi: 10.1037/0096-3445.137.2.370.
In fitting the process-dissociation model (L. L. Jacoby, 1991) to observed data, researchers aggregate outcomes across participant, items, or both. T. Curran and D. L. Hintzman (1995) demonstrated how biases from aggregation may lead to artifactual support for the model. The authors develop a hierarchical process-dissociation model that does not require aggregation for analysis. Most importantly, the Curran and Hintzman critique does not hold for this model. Model analysis provides for support of process dissociation--selective influence holds, and there is a dissociation in correlation patterns among participants and items. Items that are better recollected also elicit higher automatic activation. There is no correlation, however, across participants; that is, participants with higher recollection have no increased tendency toward automatic activation. The critique of aggregation is not limited to process dissociation. Aggregation distorts analysis in many nonlinear models, including signal detection, multinomial processing tree models, and strength models. Hierarchical modeling serves as a general solution for accurately fitting these psychological-processing models to data.
在将过程分离模型(L. L. 雅各比,1991年)应用于观测数据时,研究人员会对参与者、项目或两者的结果进行汇总。T. 柯伦和D. L. 欣茨曼(1995年)证明了汇总偏差如何可能导致对该模型的虚假支持。作者开发了一种分层过程分离模型,该模型在分析时不需要汇总。最重要的是,柯伦和欣茨曼的批评不适用于此模型。模型分析为过程分离提供了支持——选择性影响成立,并且参与者和项目之间的相关模式存在分离。被更好回忆的项目也会引发更高的自动激活。然而,参与者之间不存在相关性;也就是说,回忆能力较高的参与者没有增加自动激活的倾向。对汇总的批评并不局限于过程分离。汇总在许多非线性模型中会扭曲分析,包括信号检测、多项式加工树模型和强度模型。分层建模是将这些心理加工模型准确应用于数据的通用解决方案。