Suppr超能文献

政治认同与界定问题测试:重新评估一个旧假说。

Political identification and the defining issues test: reevaluating an old hypothesis.

作者信息

Crowson H Michael, DeBacker Teresa K

机构信息

Department of Educational Psychology, University of Oklahoma, 820 Van Vleet Oval, Norman, OK 73019-2041, USA

出版信息

J Soc Psychol. 2008 Feb;148(1):43-60. doi: 10.3200/SOCP.148.1.43-60.

Abstract

Research on the association between the development of moral judgment (as measured by the Defining Issues Test [DIT]; J. R. Rest, 1979) and political attitudes has demonstrated that these factors are often reliably related. N. Emler (1987, 1990) and colleagues have asserted that DIT scores actually measure test-takers' political identity rather than their developmental level. To test this claim, these researchers have designed "faking studies" in which respondents are asked to complete the DIT as if they were of a particular political orientation, regardless of their real political views. These faking studies have yielded contradictory conclusions, whereas tests of the incremental validity of the DIT have provided some evidence for its empirical distinctiveness. In the present study, the authors reexamined this issue by pitting scores on the DIT, Version 2 (DIT-2; J. R. Rest, D. Narvaez, S. J. Thoma, & M. J. Bebeau, 1999) against several more concrete measures of political identification in several predictive models of attitudes toward human rights and civil liberties. DIT-2 scores and political identification emerged as significant predictors in nearly all regression analyses.

摘要

关于道德判断发展(通过界定问题测试[DIT]衡量;J.R. 雷斯特,1979年)与政治态度之间关联的研究表明,这些因素常常存在可靠的相关性。N. 埃mler(1987年、1990年)及其同事断言,DIT分数实际上衡量的是应试者的政治身份,而非其发展水平。为了验证这一说法,这些研究人员设计了“伪装研究”,即要求受访者不顾其真实政治观点,以特定政治倾向的人的身份完成DIT测试。这些伪装研究得出了相互矛盾的结论,而对DIT递增效度的测试为其经验独特性提供了一些证据。在本研究中,作者通过在关于人权和公民自由态度的几个预测模型中,将DIT第2版(DIT - 2;J.R. 雷斯特、D. 纳瓦埃斯、S.J. 托马和M.J. 贝博,1999年)的分数与几个更具体的政治认同指标进行对比,重新审视了这个问题。在几乎所有回归分析中,DIT - 2分数和政治认同都成为了显著的预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验